
www.manaraa.com

Community detection in graphs

Santo Fortunato∗

Complex Networks Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I-ITALY.

The modern science of networks has brought significant advances to our understanding of complex
systems. One of the most relevant features of graphs representing real systems is community
structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining
vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such
clusters, or communities, can be considered as fairly independent compartments of a graph, playing
a similar role like, e. g., the tissues or the organs in the human body. Detecting communities
is of great importance in sociology, biology and computer science, disciplines where systems are
often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite
the huge effort of a large interdisciplinary community of scientists working on it over the past few
years. We will attempt a thorough exposition of the topic, from the definition of the main elements
of the problem, to the presentation of most methods developed, with a special focus on techniques
designed by statistical physicists, from the discussion of crucial issues like the significance of
clustering and how methods should be tested and compared against each other, to the description
of applications to real networks.

Contents

I. Introduction 1

II. Communities in real-world networks 4

III. Elements of Community Detection 7
A. Computational complexity 8
B. Communities 9

1. Basics 9
2. Local definitions 9
3. Global definitions 11
4. Definitions based on vertex similarity 11

C. Partitions 12
1. Basics 12
2. Quality functions: modularity 13

IV. Traditional methods 15
A. Graph partitioning 15
B. Hierarchical clustering 17
C. Partitional clustering 18

V. Divisive algorithms 19
A. The algorithm of Girvan and Newman 19
B. Other methods 21

VI. Modularity-based methods 23
A. Modularity optimization 23

1. Greedy techniques 23
2. Simulated annealing 25
3. Extremal optimization 26
4. Spectral optimization 26
5. Other optimization strategies 28

B. Modifications of modularity 29
C. Limits of modularity 34

VII. Spectral Algorithms 36

VIII. Dynamic Algorithms 38
A. Spin models 38
B. Random walk 39
C. Synchronization 41

∗Electronic address: fortunato@isi.it

IX. Methods based on statistical inference 42
A. Generative models 42
B. Blockmodeling, model selection & information

theory 45

X. Other methods 48

XI. Methods to find overlapping communities 50
A. Clique percolation 50
B. Other techniques 52

XII. Multiresolution methods and cluster hierarchy 55
A. Multiresolution methods 55
B. Hierarchical methods 57

XIII. Significance of clustering 58

XIV. Testing Algorithms 61
A. Benchmarks 61
B. Comparing partitions: measures 65
C. Comparing algorithms 67

XV. General properties of real clusters 69
A. Static communities 69
B. Dynamic communities 70

XVI. Applications on real-world networks 73
A. Biological networks 73
B. Social networks 74
C. Other networks 76

XVII. Outlook 77

Acknowledgments 80

A. Elements of Graph Theory 80
1. Basic Definitions 80
2. Graph Matrices 81
3. Model graphs 82

References 83

I. INTRODUCTION

The origin of graph theory dates back to Euler’s solu-
tion of the puzzle of Königsberg’s bridges in 1736 (Euler,

ar
X

iv
:0

90
6.

06
12

v1
 [

ph
ys

ic
s.

so
c-

ph
]

 3
 J

un
 2

00
9

mailto:fortunato@isi.it

www.manaraa.com

2

1736). Since then a lot has been learned about graphs
and their mathematical properties (Bollobas, 1998). In
the 20th century they have also become extremely useful
as representation of a wide variety of systems in different
areas. Biological, social, technological, and information
networks can be studied as graphs, and graph analysis
has become crucial to understand the features of these
systems. For instance, social network analysis started in
the 1930’s and has become one of the most important
topics in sociology (Scott, 2000; Wasserman and Faust,
1994). In recent times, the computer revolution has pro-
vided scholars with a huge amount of data and computa-
tional resources to process and analyze these data. The
size of real networks one can potentially handle has also
grown considerably, reaching millions or even billions of
vertices. The need to deal with such a large number of
units has produced a deep change in the way graphs are
approached (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Mendes and Dorogovtsev,
2003; Newman, 2003; Pastor-Satorras and Vespignani,
2004).

Graphs representing real systems are not regular like,
e. g., lattices. They are objects where order coexists with
disorder. The paradigm of disordered graph is the ran-
dom graph, introduced by P. Erdös and A. Rényi (Erdös
and Rényi, 1959). In it, the probability of having an
edge between a pair of vertices is equal for all possible
pairs (see Appendix). In a random graph, the distribu-
tion of edges among the vertices is highly homogeneous.
For instance, the distribution of the number of neigh-
bours of a vertex, or degree, is binomial, so most ver-
tices have equal or similar degree. Real networks are
not random graphs, as they display big inhomogeneities,
revealing a high level of order and organization. The de-
gree distribution is broad, with a tail that often follows
a power law: therefore, many vertices with low degree
coexist with some vertices with large degree. Further-
more, the distribution of edges is not only globally, but
also locally inhomogeneous, with high concentrations of
edges within special groups of vertices, and low concen-
trations between these groups. This feature of real net-
works is called community structure (Girvan and New-
man, 2002), or clustering, and is the topic of this review
(for earlier reviews see Refs. (Danon et al., 2007; For-
tunato and Castellano, 2009; Newman, 2004a; Schaeffer,
2007)). Communities, also called clusters or modules, are
groups of vertices which probably share common proper-
ties and/or play similar roles within the graph. In Fig. 1 a
schematic example of a graph with communities is shown.

Society offers a wide variety of possible group organi-
zations: families, working and friendship circles, villages,
towns, nations. The diffusion of Internet has also led
to the creation of virtual groups, that live on the Web,
like online communities. Indeed, social communities have
been studied for a long time (Coleman, 1964; Freeman,
2004; Kottak, 2004; Moody and White, 2003). Communi-
ties also occur in many networked systems from biology,

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��������

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

������

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
���

��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����

�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

FIG. 1 A simple graph with three communities, enclosed
by the dashed circles. Reprinted figure with permission
from (Fortunato and Castellano, 2009). c©2009 by Springer.

computer science, engineering, economics, politics, etc.
In protein-protein interaction networks, communities are
likely to group proteins having the same specific function
within the cell (Chen and Yuan, 2006; Rives and Galitski,
2003; Spirin and Mirny, 2003), in the graph of the World
Wide Web they may correspond to groups of pages deal-
ing with the same or related topics (Flake et al., 2002),
in metabolic networks they may be related to functional
modules such as cycles and pathways (Guimerà and Ama-
ral, 2005; Palla et al., 2005), in food webs they may iden-
tify compartments (Krause et al., 2003; Pimm, 1979),
and so on.

Community detection is important for other reasons,
too. Identifying modules and their boundaries allows for
a classification of vertices, according to their structural
position in the modules. So, vertices with a central posi-
tion in their clusters, i.e. sharing a large number of edges
with the other group partners, may have an important
function of control and stability within the group; ver-
tices lying at the boundaries between modules play an
important role of mediation and lead the relationships
and exchanges between different communities. Such clas-
sification seems to be meaningful in social (Burt, 1976;
Freeman, 1977; Granovetter, 1973) and metabolic net-
works (Guimerà and Amaral, 2005). Finally, one can
study the graph where vertices are the communities and
edges are set between clusters if there are connections be-
tween some of their vertices in the original graph and/or
if the modules overlap. In this way one attains a coarse-
grained description of the original graph, which unveils
the relationships between modules. Recent studies indi-

www.manaraa.com

3

cate that networks of communities have a different degree
distribution with respect to the full graphs (Palla et al.,
2005); however, the origin of their structures can be ex-
plained by the same mechanism (Pollner et al., 2006).

Another important aspect related to community struc-
ture is the hierarchical organization displayed by most
networked systems in the real world. Real networks are
usually composed by communities including smaller com-
munities, which in turn include smaller communities, etc.
The human body offers a paradigmatic example of hier-
archical organization: it is composed by organs, organs
are composed by tissues, tissues by cells, etc. Another
example is represented by business firms, who are char-
acterized by a pyramidal organization, going from the
workers to the president, with intermediate levels corre-
sponding to work groups, departments and management.
Herbert A. Simon has emphasized the crucial role played
by hierarchy in the structure and evolution of complex
systems (Simon, 1962). The generation and evolution of
a system organized in interrelated stable subsystems are
much quicker than if the system were unstructured, be-
cause it is much easier to assemble the smallest subparts
first and use them as building blocks to get larger struc-
tures, until the whole system is assembled. In this way
it is also far more difficult that errors (mutations) occur
along the process.

The aim of community detection in graphs is to iden-
tify the modules and, possibly, their hierarchical orga-
nization, by only using the information encoded in the
graph topology. The problem has a long tradition and it
has appeared in various forms in several disciplines. The
first analysis of community structure was carried out by
Weiss and Jacobson (Weiss and Jacobson, 1955), who
searched for work groups within a government agency.
The authors studied the matrix of working relationships
between members of the agency, which were identified by
means of private interviews. Work groups were separated
by removing the members working with people of differ-
ent groups, which act as connectors between them. This
idea of cutting the bridges between groups is at the ba-
sis of several modern algorithms of community detection
(Section V). Research on communities actually started
even earlier than the paper by Weiss and Jacobson. Al-
ready in 1927, Stuart Rice looked for clusters of people
in small political bodies, based on the similarity of their
voting patterns (Rice, 1927). Two decades later, George
Homans showed that social groups could be revealed by
suitably rearranging the rows and the columns of matri-
ces describing social ties, until they take an approximate
block-diagonal form (Homans, 1950). This procedure is
now standard. Meanwhile, traditional techniques to find
communities in social networks are hierarchical cluster-
ing and partitional clustering (Sections IV.B and IV.C),
where vertices are joined into groups according to their
mutual similarity.

Identifying graph communities is a popular topic in
computer science, too. In parallel computing, for in-
stance, it is crucial to know what is the best way to

allocate tasks to processors so as to minimize the commu-
nications between them and enable a rapid performance
of the calculation. This can be accomplished by splitting
the computer cluster into groups with roughly the same
number of processors, such that the number of physi-
cal connections between processors of different groups is
minimal. The mathematical formalization of this prob-
lem is called graph partitioning (Section IV.A). The first
algorithms for graph partitioning were proposed in the
early 1970’s.

In a seminal paper appeared in 2002, Girvan and New-
man proposed a new algorithm, aiming at the identifica-
tion of edges lying between communities and their suc-
cessive removal, a procedure that after a few iterations
leads to the isolation of the communities (Girvan and
Newman, 2002). The intercommunity edges are detected
according to the values of a centrality measure, the edge
betweenness, that expresses the importance of the role
of the edges in processes where signals are transmitted
across the graph following paths of minimal length. The
paper triggered a big activity in the field, and many new
methods have been proposed in the last years. In partic-
ular, physicists entered the game, bringing in their tools
and techniques: spin models, optimization, percolation,
random walks, synchronization, etc., became ingredients
of new original algorithms. The field has also taken ad-
vantage of concepts and methods from computer science,
nonlinear dynamics, sociology, discrete mathematics.

In this manuscript we try to cover in some detail the
work done in this area. We shall pay a special atten-
tion to the contributions made by physicists, but we shall
also give proper credit to important results obtained by
scholars of other disciplines. Section II introduces com-
munities in real networks, and is supposed to make the
reader acquainted with the problem and its relevance.
In Section III we define the basic elements of commu-
nity detection, i. e. the concepts of community and
partition. Traditional clustering methods in computer
and social sciences, i. e. graph partitioning, hierarchi-
cal and partitional clustering are reviewed in Section IV.
Modern methods, divided into categories based on the
type of approach, are presented in Sections V to X. Algo-
rithms to find overlapping communities, multiresolution
and hierarchical techniques, are separately described in
Sections XI and XII, respectively. We stress that our
categorization of the algorithms is not sharp, because
many algorithms may enter more categories: we tried
to classify them based on what we believe is their main
feature/purpose, even if other aspects may be present.
Sections XIII and XIV are devoted to the issues of defin-
ing when community structure is significant, and decid-
ing about the quality of algorithms’ performances. In
Sections XV and XVI we describe general properties of
clusters found in real networks, and specific applications
of clustering algorithms. Section XVII contains the sum-
mary of the review, along with a discussion about future
research directions in this area. The review makes use
of several concepts of graph theory, that are defined and

www.manaraa.com

4

4

20

22

21 9

28

3

27

18

19

23

29

7

17

24

33

16

30 34

26

25

32
8

2
1

12

11

6

5

13

14

31

10
15

Beak

Beescratch

BumperCCL

Cross

DN16

DN21

DN63

Double

Feather

Fish

Five

Fork

Gallatin

Grin

Haecksel

Hook

Jet

Jonah

Knit

Kringel

MN105

MN23

MN60

MN83

Mus

Notch
Number1

Oscar

Patchback

PL

Quasi

Ripplefluke

Scabs

Shmuddel

SMN5

SN100

SN4

SN63

SN89

SN9

SN90

SN96

Stripes

Thumper
Topless

TR120

TR77

TR82

TR88

TR99

Trigger

TSN103

TSN83

Upbang

Vau

Wave

Web

Whitetip

Zap

Zig

Zipfel

Agent-based

Mathematical

Statistical Physics

Ecology

Models

Structure of RNA

a

b

c

FIG. 2 Community structure in social networks. a) Zachary’s karate club, a standard benchmark in community detection. The
colors correspond to the best partition found by optimizing the modularity of Newman and Girvan (Section VI.A). Reprinted
figure with permission from (Donetti and Muñoz, 2004). c©2004 by IOP Publishing and SISSA. b) Collaboration network
between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm
of Girvan and Newman (Section V.A) and correspond quite closely to research divisions of the institute. Further subdivisions
correspond to smaller research groups, revolving around project leaders. Reprinted figure with permission from (Girvan and
Newman, 2002). c©2002 by the National Academy of Science of the USA. c) Lusseau’s network of bottlenose dolphins. The
colors label the communities identified through the optimization of a modified version of the modularity of Newman and
Girvan, proposed by Arenas et al. (Arenas et al., 2008b) (Section XII.A). The partition matches the biological classification of
the dolphins proposed by Lusseau. Reprinted figure with permission from (Arenas et al., 2008b). c©2008 by IOP Publishing.

explained in the Appendix. Readers not acquainted with
these concepts are urged to read the Appendix first.

II. COMMUNITIES IN REAL-WORLD NETWORKS

In this section we shall present some striking examples
of real networks with community structure. In this way
we shall see what communities look like and why they
are important.

Social networks are paradigmatic examples of graphs
with communities. The word community itself refers to
a social context. People naturally tend to form groups,

within their work environment, family, friends.

In Fig. 2 we show some examples of social networks.
The first example (Fig. 2a) is Zachary’s network of karate
club members (Zachary, 1977), a well-known graph reg-
ularly used as a benchmark to test community detection
algorithms (Section XIV.A). It consists of 34 vertices, the
members of a karate club in the United States, who were
observed during a period of three years. Edges connect
individuals who were observed to interact outside the ac-
tivities of the club. At some point, a conflict between
the club president and the instructor led to the fission of
the club in two separate groups, supporting the instruc-
tor and the president, respectively (indicated by squares

www.manaraa.com

5

FIG. 3 Community structure in protein-protein interaction networks. The graph pictures the interactions between proteins
in cancerous cells of a rat. Communities, labeled by colors, were detected with the k-clique percolation method by Palla et al.
(Section XI.A). Reprinted figure with permission from (Jonsson et al., 2006). c©2006 by PubMed Central.

and circles). The question is whether from the original
network structure it is possible to infer the composition
of the two groups. Indeed, by looking at Fig. 2a one
can distinguish two aggregations, one around vertices 33
and 34 (34 is the president), the other around vertex 1
(the instructor). One can also identify several vertices
lying between the two main structures, like 3, 9, 10; such
vertices are often misclassified by community detection
methods.

Fig. 2b displays the largest connected component of
a network of collaborations of scientists working at the
Santa Fe Institute (SFI). There are 118 vertices, repre-
senting resident scientists at SFI and their collaborators.
Edges are placed between scientists that have published
at least one paper together. The visualization layout al-
lows to distinguish disciplinary groups. In this network
one observes many cliques, as authors of the same pa-
per are all linked to each other. There are but a few

connections between most groups.
In Fig. 2c we show the network of bottlenose dol-

phins living in Doubtful Sound (New Zealand) analyzed
by Lusseau (Lusseau, 2003). There are 62 dolphins and
edges were set between animals that were seen together
more often than expected by chance. The dolphins sep-
arated in two groups after a dolphin left the place for
some time (squares and circles in the figure). Such groups
are quite cohesive, with several internal cliques, and eas-
ily identifiable: only six edges join vertices of different
groups. Due to this natural classification Lusseau’s dol-
phins’ network, like Zachary’s karate club, is often used
to test algorithms for community detection.

Protein-protein interaction (PPI) networks are subject
of intense investigations in biology and bioinformatics,
as the interactions between proteins are fundamental for
each process in the cell (Zhang, 2009). Fig. 3 illustrates
a PPI network of the rat proteome (Jonsson et al., 2006).

www.manaraa.com

6

FIG. 4 Community structure in technological networks.
Sample of the web graph consisting of the pages of a web
site and their mutual hyperlinks, which are directed. Com-
munities, indicated by the colors, were detected with the algo-
rithm of Girvan and Newman (Section V.A), by neglecting the
directedness of the edges. Reprinted figure with permission
from (Newman and Girvan, 2004). c©2004 by the American
Physical Society.

Each interaction is derived by homology from experimen-
tally observed interactions in other organisms. In our
example, the proteins interact very frequently with each
other, as they belong to metastatic cells, which have a
high motility and invasiveness with respect to normal
cells. Communities correspond to functional groups, i.e.
to proteins having the same or similar functions, which
are expected to be involved in the same processes. The
modules are labeled by the overall function or the dom-
inating protein class. Most communities are associated
to cancer and metastasis, which indirectly shows how im-
portant detecting modules in PPI networks is.

Relationships/interactions between elements of a sys-
tem need not be reciprocal. In many cases they have a
precise direction, that needs to be taken into account to
understand the system as a whole. As an example we can
cite predator-prey relationships in food webs. In Fig. 4
we see another example, taken from technology. The
system is the World Wide Web, which can be seen as a
graph by representing web pages as vertices and the hy-
perlinks that make users move from one page to another
as edges (Albert et al., 1999). Hyperlinks are directed:
if one can move from page A to page B by clicking on a
hyperlink of A, one usually does not find on B a hyper-
link taking back to A. In fact, very few hyperlinks (less
than 10%) are reciprocal. Communities of the web graph
are groups of pages having topical similarities. Detect-
ing communities in the Web graph may help to identify

the artificial clusters created by link farms in order to
enhance the PageRank (Brin and Page, 1998) value of
Web sites and grant them a higher Google ranking. In
this way one could discourage this unfair practice. One
usually assumes that the existence of a hyperlink between
two pages implies that they are content-related, and that
this similarity is independent of the hyperlink direction.
Therefore it is customary to neglect the directedness of
the hyperlinks and to consider the graph as undirected,
for the purpose of community detection. On the other
hand, taking properly into account the directedness of
the edges can considerably improve the quality of the par-
tition(s), as one can handle a lot of precious information
about the system. Moreover, in some instances neglect-
ing edge directedness may lead to strange results (Leicht
and Newman, 2008; Rosvall and Bergstrom, 2008). De-
veloping methods of community detection for directed
graphs is a hard task. For instance, a directed graph is
characterized by asymmetrical matrices (adjacency ma-
trix, Laplacian, etc.), so spectral analysis is much more
complex. Only a few techniques can be easily extended
from the undirected to the directed case. Otherwise, the
problem must be formulated from scratch.

Edge directedness is not the only complication to deal
with when facing the problem of graph clustering. In
many real networks vertices may belong to more than
one group. In this case one speaks of overlapping com-
munities and uses the term cover, rather than partition,
whose standard definition forbids multiple memberships
of vertices. Classical examples are social networks, where
an individual usually belongs to different circles at the
same time, from that of work colleagues to family, sport
associations, etc.. Traditional algorithms of community
detection assign each vertex to a single module. In so do-
ing, they neglect potentially relevant information. Ver-
tices belonging to more communities are likely to play
an important role of intermediation between different
compartments of the graph. In Fig. 5 we show a net-
work of word association derived starting from the word
“bright”. The network builds on the University of South
Florida Free Association Norms (Nelson et al., 1998). An
edge between words A and B indicates that some peo-
ple associate B to the word A. The graph clearly dis-
plays four communities, corresponding to the categories
Intelligence, Astronomy, Light and Colors. The word
“bright” is related to all of them by construction. Other
words belong to more categories, e.g. “dark” (Colors
and Light). Accounting for overlapping communities in-
troduces a further variable, the membership of vertices
in different communities, which enormously increases the
number of possible covers with respect to standard parti-
tions. Therefore, searching for overlapping communities
is much more computationally demanding than detecting
standard partitions.

So far we have discussed examples of unipartite graphs.
However, it is not uncommon to find real networks with
different classes of vertices, and edges joining only ver-
tices of different classes. An example is a network of

www.manaraa.com

7

Scientist
Science Astronomy

Earth
Space

Moon

Star
Ray

Intelligent

Golden

Glare

Sun

Sky
Moonlight

Eyes

SunshineLight

Lit

Dark
Brown

Tan

Orange

BlueYellow

Color

Gray

Black

Race

White
Green

Red Crayon
Pink

Velvet

Flaslight

Glow

Dim

Gifted
Genius

Smart

Inventor
Einstein

Brilliant
Shine

Laser
Telescope

Horizon

Sunset

Ribbon

Violet

Purple

Beam

Night

IntelligenceIntelligence

AstronomyAstronomy

LightLight

ColorsColors

Intelligence

Astronomy

BRIGHT

Light

Colors

FIG. 5 Overlapping communities in a network of word as-
sociation. The groups, labeled by the colors, were detected
with the k-clique percolation method by Palla et al. (Sec-
tion XI.A). Reprinted figure with permission from (Palla
et al., 2005). c©2005 by the Nature Publishing Group.

scientists and papers, where edges join scientists and the
papers they have authored. Here there is no edge be-
tween any pair of scientists or papers, so the graph is
bipartite. For a multipartite network the concept of com-
munity does not change much with respect to the case of
unipartite graphs, as it remains related to a large den-
sity of edges between members of the same group, with
the only difference that the elements of each group be-
long to different vertex classes. Multipartite graphs are
usually reduced to unipartite projections of each vertex
class. For instance, from the bipartite network of scien-
tists and papers one can extract a network of scientists
only, who are related by coauthorship. In this way one
can adopt standard techniques of network analysis, in
particular standard clustering methods, but a lot of infor-
mation gets lost. Detecting communities in multipartite
networks can have interesting applications in, e.g., mar-
keting. Large shopping networks, in which customers are
linked to the products they have bought, allow to classify
customers based on the types of product they purchase
more often: this could be used both to organize targeted
advertising, as well as to give recommendations about
future purchases (Adomavicius and Tuzhilin, 2005). The

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17
18

1

2

3

4

5
6

7

8 9

10

11

12

13

14

FIG. 6 Community structure in multipartite networks. This
bipartite graph refers to the Southern Women Event Partic-
ipation data set. Women are represented as open symbols
with black labels, events as filled symbols with white labels.
The illustrated vertex partition has been obtained by max-
imizing a modified version of the modularity by Newman
and Girvan, tailored on bipartite graphs (Barber, 2007) (Sec-
tion VI.B). Reprinted figure with permission from (Barber,
2007). c©2007 by the American Physical Society.

problem of community detection in multipartite networks
is not trivial, and usually requires ad hoc methodologies.
Fig. 6 illustrates the famous bipartite network of South-
ern Women studied by Davis et al. (Davis et al., 1941).
There are 32 vertices, representing 18 women from the
area of Natchez, Mississippi, and 14 social events. Edges
represent the participation of the women in the events.
From the figure one can see that the network has a clear
community structure.

In some of the previous examples, edges have (or can
have) weights. For instance, the edges of the collabora-
tion network of Fig. 2b could be weighted by the number
of papers coauthored by pairs of scientists. Similarly,
the edges of the word association network of Fig. 5 are
weighted by the number of times pairs of words have
been associated by people. Weights are precious addi-
tional information on a graph, and should be considered
in the analysis, including in community detection. In
many cases methods working on unweighted graphs can
be simply extended to the weighted case.

III. ELEMENTS OF COMMUNITY DETECTION

The problem of graph clustering, intuitive at first sight,
is actually not well defined. The main elements of the
problem themselves, i.e. the concepts of community and
partition, are not rigorously defined, and require some de-
gree of arbitrariness and/or common sense. Indeed, some

www.manaraa.com

8

ambiguities are hidden and there are often many equally
legitimate ways of resolving them. Therefore, it is not
surprising that there are plenty of recipes in the litera-
ture and that people do not even try to ground the prob-
lem on shared definitions. It is important to stress that
the identification of structural clusters is possible only if
graphs are sparse, i.e. if the number of edges m is of the
order of the number of nodes n of the graph. If m� n,
the distribution of edges among the nodes is too homo-
geneous for communities to make sense1. In this case the
problem turns into something rather different, close to
data clustering (Gan et al., 2007), which requires con-
cepts and methods of a different nature. The main dif-
ference is that, while communities in graphs are related,
explicitly or implicitly, to the concept of edge density
(inside versus outside the community), in data clustering
communities are sets of points which are “close” to each
other, with respect to a measure of distance or similarity,
defined for each pair of points. Some classical techniques
for data clustering, like hierarchical and partitional clus-
tering will be discussed later in the review (Sections IV.B
and IV.C), as they are sometimes adopted for graph clus-
tering too. Other standard procedures for data clustering
include neural network clustering techniques like, e. g.,
self-organizing maps and multi-dimensional scaling tech-
niques like, e. g., singular value decomposition and prin-
cipal component analysis (Gan et al., 2007).

In this section we shall attempt an ordered exposition
of the fundamental concepts of community detection. Af-
ter a brief discussion of the issue of computational com-
plexity for the algorithms, we shall review the notions of
community and partition.

A. Computational complexity

The massive amount of data on real networks currently
available makes the issue of the speed of clustering al-
gorithms essential. The computational complexity of an
algorithm is the estimate of the amount of resources re-
quired by the algorithm to perform a task. This involves
both the number of computation steps needed and the
number of memory units that need to be simultaneously
allocated to run the computation. Such demands are
usually expressed by their scalability with the size of the
system at study. In the case of a graph, the size is typ-
ically indicated by the number of vertices n and/or the
number of edges m. The computational complexity of
an algorithm cannot always be calculated. In fact, some-
times this is a very hard task, or even impossible. In
these cases, it is however important to have at least an
estimate of the worst-case complexity of the algorithm,

1 This is not necessarily true if graphs are weighted with a hetero-
geneous distribution of weights. In such cases communities may
still be identified as subgraphs with a high internal density of
weight.

which is the amount of computational resources needed
to run the algorithm in the most unfavorable case for a
given system size.

The notation O(nαmβ) indicates that the computer
time grows as a power of both the number of vertices
and edges, with exponents α and β, respectively. Ideally,
one would like to have the lowest possible values for the
exponents, which would correspond to the lowest possi-
ble computational demands. Samples of the Web graph,
with millions of vertices and billions of edges, cannot be
tackled by algorithms whose running time grows faster
than O(n).

Algorithms with polynomial complexity form the class
P. For some important decision and optimization prob-
lems, there are no known polynomial algorithms. Find-
ing solutions of such problems in the worst-case scenario
may demand an exhaustive search, which takes a time
growing faster than any polynomial function of the sys-
tem size, e.g. exponentially. Problems whose solutions
can be verified in a polynomial time span the class NP
of non-deterministic polynomial time problems, which in-
cludes P. A problem is NP-hard if a solution for it can be
translated into a solution for any NP-problem. However,
a NP-hard problem needs not be in the class NP. If it
does belong to NP it is called NP-complete. The class
of NP-complete problems has drawn a special attention
in computer science, as it includes many famous prob-
lems like the Travelling Salesman, Boolean Satisfiability
(SAT), Linear Programming, etc. (Garey and Johnson,
1990; Papadimitriou, 1994). The fact that NP prob-
lems have a solution which is verifiable in polynomial
time does not mean that NP problems have polynomial
complexity, i. e., that they are in P. In fact, the ques-
tion of whether NP=P is the most important open prob-
lem in theoretical computer science. NP-hard problems
need not be in NP (in which case they would be NP-
complete), but they are at least as hard as NP-complete
problems, so they are unlikely to have polynomial com-
plexity, although a proof of that is still missing.

Many clustering algorithms or problems related to
clustering are NP-hard. In this case, it is pointless to
use exact algorithms, which could be applied only to
very small systems. Moreover, even if an algorithm has a
polynomial complexity, it may still be too slow to tackle
large systems of interest. In all such cases it is common
to use approximation algorithms, i.e. methods that do
not deliver an exact solution to the problem at hand,
but only an approximate solution, with the advantage of
a lower complexity. Approximation algorithms are often
non-deterministic, as they deliver different solutions for
the same problem, for different initial conditions and/or
parameters of the algorithm. The goal of such algorithms
is to deliver a solution which differs by a constant fac-
tor from the optimal solution. In any case, one should
give provable bounds on the goodness of the approxi-
mate solution delivered by the algorithm with respect to
the optimal solution. In many cases it is not possible
to approximate the solution within any constant, as the

www.manaraa.com

9

goodness of the approximation strongly depends on the
specific problem at study. Approximation algorithms are
commonly used for optimization problems, in which one
wants to find the maximum or minimum value of a given
cost function over a large set of possible system configu-
rations.

B. Communities

1. Basics

The first problem in graph clustering is to look for a
quantitative definition of community. No definition is
universally accepted. As a matter of fact, the defini-
tion often depends on the specific system at hand and/or
application one has in mind. From intuition and the ex-
amples of Section II we get the notion that there must
be more edges “inside” the community than edges link-
ing vertices of the community with the rest of the graph.
This is the reference guideline at the basis of most com-
munity definitions. But many alternative recipes are
compatible with it. Moreover, in most cases, commu-
nities are algorithmically defined, i.e. they are just the
final product of the algorithm, without a precise a priori
definition.

Let us start with a subgraph C of a graph G, with
|C| = nc and |G| = n vertices, respectively. We define
the internal and external degree of vertex v ∈ C, kintv

and kextv , as the number of edges connecting v to other
vertices of C or to the rest of the graph, respectively. If
kextv = 0, the vertex has neighbors only within C, which
is likely to be a good cluster for v; if kintv = 0, instead,
the vertex is disjoint from C and it should probably be
assigned to a different cluster. The internal degree kCint
of C is the sum of the internal degrees of its vertices.
Likewise, the external degree kCext of C is the sum of the
external degrees of its vertices. The total degree kC is the
sum of the degrees of the vertices of C. By definition,
kC = kCint + kCext.

We define the intra-cluster density δint(C) of the sub-
graph C as the ratio between the number of internal edges
of C and the number of all possible internal edges, i.e.

δint(C) =
internal edges of C

nc(nc − 1)/2
. (1)

Similarly, the inter-cluster density δext(C) is the ratio be-
tween the number of edges running from the vertices of
C and the rest of the graph and the maximum number of
inter-cluster edges possible, i.e.

δext(C) =
inter-cluster edges of C

nc(n− nc)
. (2)

For C to be a community, we expect δint(C) to be ap-
preciably larger than the average link density δ(G) of
G, which is given by the ratio between the number of
edges of G and the maximum number of possible edges

n(n − 1)/2. On the other hand, δext(C) has to be much
smaller than δ(G).

A required property of a community is connectedness.
We expect that for C to be a community there must be
a path between each pair of its vertices, running only
through vertices of C. This feature simplifies the task
of community detection on disconnected graphs, as in
this case one just analyzes each connected component
separately, unless special constraints are imposed on the
resulting clusters.

With these basic requirements in mind, we can now
introduce the main definitions of community. Social
network analysts have devised many definitions of sub-
groups with various degrees of internal cohesion among
vertices (Moody and White, 2003; Scott, 2000; Wasser-
man and Faust, 1994). Many other definitions have been
introduced by computer scientists and physicists. We
distinguish three classes of definitions: local, global and
based on vertex similarity. Other definitions will be given
in the context of the algorithms for which they were in-
troduced.

2. Local definitions

Communities are parts of the graph with a few ties
with the rest of the system. To some extent, they can be
considered as separate entities with their own autonomy.
So, it makes sense to evaluate them independently of the
graph as a whole. Local definitions focus on the subgraph
under study, including possibly its immediate neighbor-
hood, but neglecting the rest of the graph. We start with
a listing of the main definitions adopted in social network
analysis, for which we shall closely follow the exposition
of (Wasserman and Faust, 1994). There, four types of
criteria were identified: complete mutuality, reachability,
vertex degree and the comparison of internal versus exter-
nal cohesion. The corresponding communities are mostly
maximal subgraphs, which cannot be enlarged with the
addition of new vertices and edges without losing the
property which defines them.

Social communities can be defined in a very strict
sense as subgroups whose members are all “friends” to
each other (Luce and Perry, 1949) (complete mutual-
ity). In graph terms, this corresponds to a clique, i.e.
a subset whose vertices are all adjacent to each other.
In social network analysis, a clique is a maximal sub-
graph, whereas in graph theory it is common to call
cliques also non-maximal subgraphs. Triangles are the
simplest cliques, and are frequent in real networks. But
larger cliques are less frequent. Moreover, the condition
is really too strict: a subgraph with all possible internal
edges except one would be an extremely cohesive sub-
group, but it would not be considered a community un-
der this recipe. Another problem is that all vertices of
a clique are absolutely symmetric, with no differentia-
tion between them. In many practical examples, instead,
we expect that within a community there is a whole hi-

www.manaraa.com

10

erarchy of roles for the vertices, with core vertices co-
existing with peripheral ones. We remark that vertices
may belong to more cliques simultaneously, a property
which is at the basis of the k-clique percolation method
of Palla et al. (Palla et al., 2005) (see Section XI.A). From
a practical point of view, finding cliques in a graph is an
NP-complete problem (Bomze et al., 1999). The Bron-
Kerbosch method (Bron and Kerbosch, 1973) runs in a
time growing exponentially with the size of the graph.

It is however possible to relax the notion of clique,
defining subgroups which are still clique-like objects. A
possibility is to use properties related to reachability, i.e.
to the existence (and length) of paths between vertices.
An n-clique is a maximal subgraph such that the distance
of each pair of its vertices is not larger than n (Alba,
1973; Luce, 1950). For n = 1 one recovers the definition
of clique, as all vertices are adjacent, so each geodesic
path between any pair of vertices has length 1. This def-
inition, more flexible than that of clique, still has some
limitations, deriving from the fact that the geodesic paths
need not run on the vertices of the subgraph at study, but
may run on vertices outside the subgraph. In this way,
there may be two disturbing consequences. First, the
diameter of the subgraph may exceed n, even if in princi-
ple each vertex of the subgraph is less than n steps away
from any of the others. Second, the subgraph may be
disconnected, which is not consistent with the notion of
cohesion one tries to enforce. To avoid these problems,
Mokken (Mokken, 1979) has suggested two possible al-
ternatives, the n-clan and the n-club. An n-clan is an
n-clique whose diameter is not larger than n, i.e. a sub-
graph such that the distance between any two of its ver-
tices, computed over shortest paths within the subgraph,
does not exceed n. An n-club, instead, is a maximal
subgraph of diameter n. The two definitions are quite
close: the difference is that an n-clan is maximal under
the constraint of being an n-clique, whereas an n-club is
maximal under the constraint imposed by the length of
the diameter.

Another criterion for subgraph cohesion relies on the
adjacency of its vertices. The idea is that a vertex must
be adjacent to some minumum number of other vertices
in the subgraph. In the literature on social network anal-
ysis there are two complementary ways of expressing this.
A k-plex is a maximal subgraph in which each vertex is
adjacent to all other vertices of the subgraph except at
most k of them (Seidman and Foster, 1978). Similarly,
a k-core is a maximal subgraph in which each vertex is
adjacent to at least k other vertices of the subgraph (Sei-
dman, 1983). So, the two definitions impose conditions
on the minimal number of absent or present edges. The
corresponding clusters are more cohesive than n-cliques,
just because of the existence of many internal edges. In
any graph there is a whole hierarchy of cores of different
order, which can be identified by means of a recent effi-
cient algorithm (Batagelj and Zaversnik, 2003). A k-core
is essentially the same as a p-quasi complete subgraph,
which is a subgraph such that the degree of each vertex

is larger than p(k − 1), where p is a real number in [0, 1]
and k the order of the subgraph (Matsuda et al., 1999).
Determining whether a graph has a 1/2-quasi complete
graph of order at least k is NP-complete.

As cohesive as a subgraph can be, it would hardly be a
community if there is a strong cohesion as well between
the subgraph and the rest of the graph. Therefore, it
is important to compare the internal and external cohe-
sion of a subgraph. In fact, this is what is usually done
in the most recent definitions of community. The first
recipe, however, is not recent and stems from social net-
work analysis. An LS-set (Luccio and Sami, 1969), or
strong community (Radicchi et al., 2004), is a subgraph
such that the internal degree of each vertex is greater
than its external degree. This condition is quite strict
and can be relaxed into the so-called weak definition of
community (Radicchi et al., 2004), for which it suffices
that the internal degree of the subgraph exceeds its ex-
ternal degree. An LS-set is also a weak community, while
the converse is not generally true. Hu et al. (Hu et al.,
2008) have introduced alternative definitions of strong
and weak communities: a community is strong if the in-
ternal degree of any vertex of the community exceeds the
number of edges that the vertex shares with any other
community; a community is weak if its total internal de-
gree exceeds the number of edges shared by the commu-
nity with the other communities. These definitions are
in the same spirit of the planted partition model (Sec-
tion XIV). An LS-set is a strong community also in the
sense of Hu et al.. Likewise, a weak community accord-
ing to Radicchi et al. is also a weak community for Hu
et al.. In both cases the converse is not true, however.
Another definition focuses on the robustness of cluster to
edge removal and uses the concept of edge connectivity.
The edge connectivity of a pair of vertices in a graph is
the minimal number of edges that need to be removed in
order to disconnect the two vertices, i.e. such that there
is no path between them. A lambda set is a subgraph such
that any pair of vertices of the subgraph has a larger edge
connectivity than any pair formed by one vertex of the
subgraph and one outside the subgraph (Borgatti et al.,
1990). However, vertices of a lambda-set need not be
adjacent and may be quite distant from each other.

Communities can also be identified by a fitness mea-
sure, expressing to which extent a subraph satisfies a
given property related to its cohesion. The larger the
fitness, the more definite is the community. This is the
same principle behind quality functions, which give an
estimate of the goodness of a graph partition (see Sec-
tion III.C.2). The simplest fitness measure for a clus-
ter is its intra-cluster density δint(C). One could as-
sume that a subgraph C with k vertices is a cluster if
δint(C) is larger than a threshold, say ξ. Finding such
subgraphs is an NP-complete problem, as it coincides
with the NP-complete Clique problem when the thresh-
old ξ = 1 (Garey and Johnson, 1990). It is better to fix
the size of the subgraph because, without this conditions,
any clique would be one of the best possible communities,

www.manaraa.com

11

including trivial two-cliques (simple edges). Variants of
this problem focus on the number of internal edges of
the subgraph (Asahiro et al., 2002; Feige et al., 2001;
Holzapfel et al., 2003). Another measure of interest is the
relative density ρ(C) of a subgraph C, defined as the ratio
between the internal and the total degree of C. Finding
subgraphs of a given size with ρ(C) larger than a thresh-
old is NP-complete (Š́ıma and Schaeffer, 2006). Fitness
measures can also be associated to the connectivity of
the subgraph at study to the other vertices of the graph.
A good community is expected to have a small cut size
(see Section A.1), i.e. a small number of edges joining
it to the rest of the graph. This sets a bridge between
community detection and graph partitioning, which we
shall discuss in Section IV.A.

3. Global definitions

Communities can also be defined with respect to the
graph as a whole. This is reasonable in those cases in
which clusters are essential parts of the graph, which can-
not be taken apart without seriously affecting the func-
tioning of the system. The literature offers many global
criteria to identify communities. In most cases they are
indirect definitions, in which some global property of the
graph is used in an algorithm that delivers communities
at the end. However, there is a class of proper definitions,
based on the idea that a graph has community structure
if it is different from a random graph. A random graph
à la Erdös-Rényi (Section A.3), for instance, is not ex-
pected to have community structure, as any two vertices
have the same probability to be adjacent, so there should
be no preferential linking involving special groups of ver-
tices (although it has recently been shown that this is
not true (Guimerà et al., 2004)). Therefore, one can de-
fine a null model, i.e. a graph which matches the original
in some of its structural features, but which is otherwise
a random graph. The null model is used as a term of
comparison, to verify whether the graph at study dis-
plays community structure or not. The most popular
null model is that proposed by Newman and Girvan and
consists of a randomized version of the original graph,
where edges are rewired at random, under the constraint
that each vertex keeps its degree (Newman and Girvan,
2004). This null model is the basic concept behind the
definition of modularity, a function which evaluates the
goodness of partitions of a graph into modules. Modu-
larity will be discussed at length in this review, because
it has the unique privilege of being at the same time a
global criterion to define a community, a quality func-
tion and the key ingredient of the most popular method
of graph clustering. In the standard formulation of mod-
ularity, a subgraph is a community if the number of edges
inside the subgraph exceeds the expected number of in-
ternal edges that the same subgraph would have in the
null model. This expected number is an average over all
possible realizations of the null model. Several modifica-

tions of modularity have been proposed (Section VI.B).
A general class of null models, including modularity as a
special case, has been designed by Reichardt and Born-
holdt (Reichardt and Bornholdt, 2006a) (Section VI.B).

4. Definitions based on vertex similarity

It is natural to assume that communities are groups of
vertices similar to each other. One can compute the sim-
ilarity between each pair of vertices with respect to some
reference property, local or global, no matter whether
they are connected by an edge or not. Each vertex ends
up in the cluster whose vertices are most similar to it.
Similarity measures are at the basis of the method of
hierarchical clustering, to be discussed in Section IV.B.
Here we discuss some popular measures used in the lit-
erature.

If it is possible to embed the graph vertices in an n-
dimensional Euclidean space, by assigning a position to
them, one could use the distance between a pair of ver-
tices as a measure of their similarity (it is actually a mea-
sure of dissimilarity because similar vertices are expected
to be close to each other). Given the two data points
A = (a1, a2, ..., an) and B = (b1, b2, ..., bn), one could use
any norm Lm, like the Euclidean distance (L2-norm),

dEAB =
n∑
k=1

√
(ak − bk)2, (3)

the Manhattan distance (L1-norm)

dMAB =
n∑
k=1

|ak − bk|, (4)

and the L∞-norm

d∞AB = max
k∈[1,n]

|ak − bk|. (5)

Another popular spatial measure is the cosine similarity,
defined as

ρAB = arccos
a · b√∑n

k=1 a
2
k

√∑n
k=1 b

2
k

, (6)

where a ·b is the dot product of the vectors a and b. The
variable ρAB is defined in the range [0, π).

If the graph cannot be embedded in space, the sim-
ilarity must be necessarily inferred from the adjacency
relationships between vertices. A possibility is to define
a distance (Burt, 1976; Wasserman and Faust, 1994) be-
tween vertices like

dij =
√∑
k 6=i,j

(Aik −Ajk)2, (7)

where A is the adjacency matrix. This is a dissimilar-
ity measure, based on the concept of structural equiv-
alence (F.Lorrain and White, 1971). Two vertices are

www.manaraa.com

12

Powered by yFiles

FIG. 7 Schematic example of a hierarchical graph. Sixteen modules with 32 vertices each clearly form four larger clusters. All
vertices have degree 64. Reprinted figure with permission from (Lancichinetti et al., 2009). c©2009 by IOP Publishing.

structurally equivalent if they have the same neighbors,
even if they are not adjacent themselves. If i and j are
structurally equivalent, dij = 0. Vertices with large de-
gree and different neighbours are considered very “far”
from each other. Alternatively, one could measure the
overlap between the neighborhoods of the vertices i and
j, given by the ratio between the intersection and the
union of the neighborhoods, i.e.

ωij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

. (8)

Another measure related to structural equivalence is the
Pearson correlation between columns or rows of the ad-
jacency matrix,

Cij =
∑
k(Aik − µi)(Ajk − µj)

nσiσj
, (9)

where the averages µi = (
∑
j Aij)/n and the variances

σi =
∑
j(Aij − µi)2.

An alternative measure is the number of edge- (or
vertex-) independent paths between two vertices. Inde-
pendent paths do not share any edge (vertex), and their
number is related to the maximum flow that can be con-
veyed between the two vertices under the constraint that
each edge can carry only one unit of flow (max-flow/min-
cut theorem (Elias et al., 1956)). The maximum flow
can be calculated in a time O(m), for a graph with m
edges, using techniques like the augmenting path algo-
rithm (Ahuja et al., 1993). Similarly, one could consider
all paths running between two vertices. In this case, there
is the problem that the total number of paths is infinite,

but this can be avoided if one performs a weighted sum of
the number of paths, where paths of length l are weighted
by the factor αl, with α < 1. So, the weights of long paths
are exponentially suppressed and the sum converges.

C. Partitions

1. Basics

A partition is a division of a graph in clusters, such that
each vertex belongs to one cluster. As we have seen in
Section II, in real systems vertices may be shared among
different communities. A division of a graph into over-
lapping (or fuzzy) communities is called cover.

Partitions can be hierarchically ordered, when the
graph has different levels of organization/structure at
different scales. In this case, clusters display in turn
community structure, with smaller communities inside,
which may again contain smaller communities, and so on
(Fig. 7). As an example, in a social network of children
living in the same town, one could group the children
according to the schools they attend, but within each
school one can make a subdivision into classes. Hier-
archical organization is a common feature of many real
networks, where it is revealed by a peculiar scaling of the
clustering coefficient for vertices having the same degree
k, when plotted as a function of k (Ravasz and Barabási,
2003; Ravasz et al., 2002).

A natural way to represent the hierarchical structure
of a graph is to draw a dendrogram, like the one illus-
trated in Fig. 8. Here, partitions of a graph with twelve
vertices are shown. At the bottom, each vertex is its own

www.manaraa.com

13

FIG. 8 A dendrogram, or hierarchical tree. Horizontal
cuts correspond to partitions of the graph in communities.
Reprinted figure with permission from (Newman and Girvan,
2004). c©2004 by the Americal Physical Society.

module (the “leaves” of the tree). By moving upwards,
groups of vertices are successively aggregated. Merges
of communities are represented by horizontal lines. The
uppermost level represents the whole graph as a single
community. Cutting the diagram horizontally at some
height, as shown in the figure (dashed line), displays one
partition of the graph. The diagram is hierarchical by
construction: each community belonging to a level is
fully included in a community at a higher level. Den-
drograms are regularly used in sociology and biology.
The technique of hierarchical clustering, described in Sec-
tion IV.B, lends itself naturally to this kind of represen-
tation.

2. Quality functions: modularity

The number of possible partitions grows faster than
exponentially with the size of the graph. Reliable al-
gorithms are supposed to identify good partitions. But
what is a good clustering? In order to distinguish be-
tween “good” and “bad” clusterings, it would be useful
to require that partitions satisfy a set of basic properties,
intuitive and easy to agree upon. In the wider context
of data clustering, this issue has been studied by Jon
Kleinberg (Kleinberg, 2002), who has proved an impor-
tant impossibility theorem. Given a set S of points, a
distance function d is defined, which is positive definite
and symmetric (the triangular inequality is not explicitly
required). One wishes to find a clustering f based on the
distances between the points. Kleinberg showed that no
clustering satisfies at the same time the three following
properties:

1. Scale-invariance: given a constant α, multiplying
any distance function d by α yields the same clus-
tering.

2. Richness: any possible partition of the given point
set can be recovered if one chooses a suitable dis-
tance function d.

3. Consistency: given a partition, any modification of
the distance function that does not decrease the dis-
tance between points of different clusters and that
does not increase the distance between points of the
same cluster, yields the same clustering.

The theorem cannot be extended to graph clustering be-
cause the distance function cannot be in general defined
for a graph which is not complete. For weighted com-
plete graphs, like correlation matrices (Tumminello et al.,
2008), it is often possible to define a distance function.
On a generic graph, except for the first property, which
does not make sense without a distance function2, the
other two are quite well defined. The property of richness
implies that, given a partition, one can set edges between
the vertices in such a way that the partition is a natural
outcome of the resulting graph (e.g., it could be achieved
by setting edges only between vertices of the same clus-
ter). Consistency here implies that deleting inter-cluster
edges and adding intra-cluster edges yields the same par-
tition.

Many algorithms are able to identify a subset of mean-
ingful partitions, ideally one or just a few, whereas some
others, like techniques based on hierarchical clustering
(Section IV.B), deliver a large number of partitions. That
does not mean that the partitions found are equally good.
Therefore it is helpful (sometimes even necessary) to have
a quantitative criterion to assess the goodness of a graph
partition. A quality function is a function that assigns a
number to each partition of a graph. In this way one can
rank partitions based on their score given by the quality
function. Partitions with high scores are “good”, so the
one with the largest score is by definition the best. Nev-
ertheless, one should keep in mind that the question of
when a partition is better than another one is ill-posed,
and the answer depends on the specific concept of com-
munity and/or quality function adopted.

A quality function Q is additive if there is an elemen-
tary function q such that, for any partition P of a graph

Q(P) =
∑
C∈P

q(C), (10)

where C is a generic cluster of partition P. Eq. 10 states
that the quality of a partition is given by the sum of the
qualities of the individual clusters. The function q(C)
could be any of the cluster fitness functions discussed
in Section III.B.2, for instance. Most quality functions
used in the literature are additive, although it is not a
necessary requirement.

An example of quality function is the performance P ,
which counts the number of correctly “interpreted” pairs
of vertices, i.e. two vertices belonging to the same com-
munity and connected by an edge, or two vertices be-
longing to different communities and not connected by

2 The traditional shortest-path distance between vertices is not
suitable here, as it is integer by definition.

www.manaraa.com

14

an edge. The definition of performance, for a partition
P, is

P (P) =
|{(i, j) ∈ E,Ci = Cj |+ |{(i, j) /∈ E,Ci 6= Cj |

n(n− 1)/2
.

(11)
By definition, 0 ≤ P (P) ≤ 1. Another example is cover-
age, i.e. the ratio of the number of intra-community edges
by the total number of edges: by definition, an ideal clus-
ter structure, where the clusters are disconnected from
each other, yields a coverage of 1, as all edges of the
graph fall within clusters.

The most popular quality function is the modularity
of Newman and Girvan (Newman and Girvan, 2004). It
is based on the idea that a random graph is not expected
to have a cluster structure, so the possible existence of
clusters is revealed by the comparison between the ac-
tual density of edges in a subgraph and the density one
would expect to have in the subgraph if the vertices of
the graph were attached regardless of community struc-
ture. This expected edge density depends on the chosen
null model, i.e. a copy of the original graph keeping some
of its structural properties but without community struc-
ture. Modularity can then be written as follows

Q =
1

2m

∑
ij

(Aij − Pij) δ(Ci, Cj), (12)

where the sum runs over all pairs of vertices, A is the
adjacency matrix, m the total number of edges of the
graph, and Pij represents the expected number of edges
between vertices i and j in the null model. The δ-function
yields one if vertices i and j are in the same community
(Ci = Cj), zero otherwise. The choice of the null model
graph is in principle arbitrary, and several possibilities
exist. For instance, one could simply demand that the
graph keeps the same number of edges as the original
graph, and that edges are placed with the same proba-
bility between any pair of vertices. In this case (Bernoulli
random graph), the null model term in Eq. 12 would be
a constant (i.e. Pij = p = 2m/[n(n− 1)], ∀i, j). However
this null model is not a good descriptor of real networks,
as it has a Poissonian degree distribution which is very
different from the skewed distributions found in real net-
works. Due to the important implications that broad de-
gree distributions have for the structure and function of
real networks (Albert and Barabási, 2002; Barrat et al.,
2008; Boccaletti et al., 2006; Dorogovtsev and Mendes,
2002; Newman, 2003; Pastor-Satorras and Vespignani,
2004), it is preferable to go for a null model with the
same degree distribution of the original graph. The stan-
dard null model of modularity imposes that the expected
degree sequence (after averaging over all possible configu-
rations of the model) matches the actual degree sequence
of the graph. This is a stricter constraint than merely
requiring the match of the degree distributions, and is

essentially equivalent 3 to the configuration model, which
has been subject of intense investigations in the recent
literature on networks (Luczak, 1992; Molloy and Reed,
1995). In this null model, a vertex could be attached to
any other vertex of the graph and the probability that
vertices i and j, with degrees ki and kj , are connected,
can be calculated without problems. In fact, in order to
form an edge between i and j one needs to join two stubs
(i.e. half-edges), incident with i and j. The probability
pi to pick at random a stub incident with i is ki/2m, as
there are ki stubs incident with i out of a total of 2m.
The probability of a connection between i and j is then
given by the product pipj , since edges are placed inde-
pendently of each other. The result is kikj/4m2, which
yields an expected number Pij = 2mpipj = kikj/2m of
edges between i and j. So, the final expression of modu-
larity reads

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj). (13)

Since the only contributions to the sum come from vertex
pairs belonging to the same cluster, we can group these
contributions together and rewrite the sum over the ver-
tex pairs as a sum over the clusters

Q =
nc∑
c=1

[lc
m
−
(
dc
2m

)2]
. (14)

Here, nc is the number of clusters, lc the total number of
edges joining vertices of module c and dc the sum of the
degrees of the vertices of c. In Eq. 14, the first term of
each summand is the fraction of edges of the graph inside
the module, whereas the second term represents the ex-
pected fraction of edges that would be there if the graph
were a random graph with the same expected degree for
each vertex.

A nice feature of modularity is that it can be equiva-
lently expressed both in terms of the intra-cluster edges,
as in Eq. 14, and in terms of the inter-cluster edges (Djid-
jev, 2006). In fact, the maximum of modularity can be
expressed as

Qmax = maxP

{
nc∑
c=1

[lc
m
−
(
dc
2m

)2]}

=
1
m

maxP

{
nc∑
c=1

[
lc − Ex(lc)

]}

= − 1
m

minP

{
−

nc∑
c=1

[
lc − Ex(lc)

]}
, (15)

3 The difference is that the configuration model maintains the
same degree sequence of the original graph for each realization,
whereas in the null model of modularity the degree sequence of a
realization is in general different, and only the average/expected
degree sequence coincides with that of the graph at hand. The
two models are equivalent in the limit of infinite graph size.

www.manaraa.com

15

where maxP and minP indicates the maximum and
the minimum over all possible graph partitions P and
Ex(lc) = d2

c/4m indicates the expected number of links
in cluster c in the null model of modularity. By adding
and subtracting the total number of edges m of the graph
one finally gets

Qmax = − 1
m

minP
[(
m−

nc∑
c=1

lc

)
−
(
m−

nc∑
c=1

Ex(lc)
)]

= − 1
m

minP(|CutP | − ExCutP). (16)

In the last expression |CutP | = m −
∑nc

c=1 lc is the cut
size of partition P, and ExCutP = m −

∑nc

c=1 Ex(lc) is
the expected cut size of the partition in modularity’s null
model.

According to Eq. 14, a subgraph is a module if the
corresponding contribution to modularity in the sum is
positive. The more the number of internal edges of the
cluster exceeds the expected number, the better defined
the community. So, large positive values of the modu-
larity indicate good partitions4. The modularity of the
whole graph, taken as a single community, is zero, as the
two terms of the only summand in this case are equal
and opposite. Modularity is always smaller than one,
and can be negative as well. For instance, the partition
in which each vertex is a community is always negative:
in this case the sum runs over n terms, which are all neg-
ative as the first term of each summand is zero. This
is a nice feature of the measure, implying that, if there
are no partitions with positive modularity, the graph has
no community structure. On the contrary, the existence
of partitions with large negative modularity values may
hint to the existence of subgroups with very few inter-
nal edges and many edges lying between them (multipar-
tite structure) (Newman, 2006a). Modularity has been
employed as quality function in many algorithms, like
some of the divisive algorithms of Section V. In addi-
tion, modularity optimization is itself a popular method
for community detection (see Section VI.A). Modularity
also allows to assess the stability of partitions (Massen
and Doye, 2006) (Section XIII), it can be used to design
layouts for graph visualization (Noack, 2009) and to per-
form a sort of renormalization of a graph, by transform-
ing a graph into a smaller one with the same community
structure (Arenas et al., 2007).

IV. TRADITIONAL METHODS

A. Graph partitioning

The problem of graph partitioning consists in dividing
the vertices in g groups of predefined size, such that the

4 This is not necessarily true, as we will see in Section VI.C.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

FIG. 9 Graph partitioning. The dashed line shows the so-
lution of the minimum bisection problem for the graph illus-
trated, i. e. the partition in two groups of equal size with min-
imal number of edges running between the groups. Reprinted
figure with permission from (Fortunato and Castellano, 2009).
c©2009 by Springer.

number of edges lying between the groups is minimal.
The number of edges running between clusters is called
cut size. Fig. 9 presents the solution of the problem for
a graph with fourteen vertices, for g = 2 and clusters of
equal size.

Specifying the number of clusters of the partition is
necessary. If one simply imposed a partition with the
minimal cut size, and left the number of clusters free,
the solution would be trivial, corresponding to all ver-
tices ending up in the same cluster, as this would yield a
vanishing cut size.

Graph partitioning is a fundamental issue in parallel
computing, circuit partitioning and layout, and in the
design of many serial algorithms, including techniques
to solve partial differential equations and sparse linear
systems of equations. Most variants of the graph parti-
tioning problem are NP-hard. There are however several
algorithms that can do a good job, even if their solutions
are not necessarily optimal (Pothen, 1997). Many algo-
rithms perform a bisection of the graph. Partitions into
more than two clusters are usually attained by iterative
bisectioning. Moreover, in most cases one imposes the
constraint that the clusters have equal size. This prob-
lem is called minimum bisection and is NP-hard.

The Kernighan-Lin algorithm (Kernighan and Lin,
1970) is one of the earliest methods proposed and is still
frequently used, often in combination with other tech-
niques. The authors were motivated by the problem of
partitioning electronic circuits onto boards: the nodes
contained in different boards need to be linked to each
other with the least number of connections. The pro-
cedure is an optimization of a benefit function Q, which
represents the difference between the number of edges in-

www.manaraa.com

16

side the modules and the number of edges lying between
them. The starting point is an initial partition of the
graph in two clusters of the predefined size: such initial
partition can be random or suggested by some informa-
tion on the graph structure. Then, subsets consisting of
equal numbers of vertices are swapped between the two
groups, so that Q has the maximal increase. The sub-
sets can consist of single vertices. To reduce the risk to
be trapped in local maxima of Q, the procedure includes
some swaps that decrease the function Q. After a series
of swaps with positive and negative gains, the partition
with the largest value of Q is selected and used as start-
ing point of a new series of iterations. The Kernighan-
Lin algorithm is quite fast, scaling as O(n2 log n) (n be-
ing as usual the number of vertices), if only a constant
number of swaps are performed at each iteration. The
most expensive part is the identification of the subsets to
swap, which requires the computation of the gains/losses
for any pair of candidate subsets. On sparse graphs, a
slightly different heuristic allows to lower the complex-
ity to O(n2). The partitions found by the procedure are
strongly dependent on the initial configuration and other
algorithms can do better. It is preferable to start with
a good guess about the sought partition, otherwise the
results are quite poor. Therefore the method is typi-
cally used to improve on the partitions found through
other techniques, by using them as starting configura-
tions for the algorithm. The Kernighan-Lin algorithm
has been extended to extract partitions in any number
of parts (Suaris and Kedem, 1988), however the run-time
and storage costs increase rapidly with the number of
clusters.

Another popular technique is the spectral bisection
method (Barnes, 1982), which is based on the properties
of the Laplacian matrix. In Section A.2 we have seen
that the Laplacian of a graph with g connected compo-
nents has g zero eigenvalues. In this case the Laplacian
can be written in block-diagonal form, i.e. the vertices
can be ordered in such a way that the Laplacian displays
g square blocks along the diagonal, with (some) entries
different from zero, whereas all other elements vanish.
Each block is the Laplacian of the corresponding sub-
graph, so it has the trivial eigenvector with components
(1, 1, 1, ..., 1, 1). Therefore, there are g degenerate eigen-
vectors with equal non-vanishing components in corre-
spondence of the vertices of a block, whereas all other
components are zero. In this way, from the components
of the eigenvectors one can identify the connected com-
ponents of the graph.

If the graph is connected, but consists of g subgraphs
which are weakly linked to each other, the spectrum will
have one zero eigenvalue and g− 1 eigenvalues which are
close to zero. If the groups are two, the second lowest
eigenvalue will be close to zero and the corresponding
eigenvector, also called Fiedler vector, can be used to
identify the two clusters as shown below.

Every partition of a graph with n vertices in two groups
can be represented by an index vector s, whose compo-

nent si is +1 if vertex i is in one group and −1 if it is in
the other group. The cut size R of the partition of the
graph in the two groups can be written as

R =
1
4
sTLs, (17)

where L is the Laplacian matrix and sT the transpose of
vector s. Vector s can be written as s =

∑
i aivi, where

vi, i = 1, ..., n are the eigenvectors of the Laplacian. If s
is properly normalized, then

R =
∑
i

a2
iλi, (18)

where λi is the Laplacian eigenvalue corresponding to
eigenvector vi. It is worth remarking that the sum con-
tains at most n−1 terms, as the Laplacian has at least one
zero eigenvalue. Minimizing R equals to the minimiza-
tion of the sum on the right-hand side of Eq. 18. This task
is still very hard. However, if the second lowest eigenvec-
tor λ2 is close enough to zero, a good approximation of
the minimum can be attained by choosing s parallel to
the Fiedler vector v2: this would reduce the sum to λ2,
which is a small number. But the index vector cannot
be perfectly parallel to v2 by construction, because all
its components are equal in modulus, whereas the com-
ponents of v2 are not. The best choice is to match the
signs of the components. So, one can set si = +1 (−1)
if vi2 > 0 (< 0). It may happen that the sizes of the two
corresponding groups do not match the predefined sizes
one wishes to have. In this case, if one aims at a split in
n1 and n2 = n−n1 vertices, the best strategy is to order
the components of the Fiedler vector from the lowest to
the largest values and to put in one group the vertices
corresponding to the first n1 components from the top
or the bottom, and the remaining vertices in the second
group. This procedure yields two partitions: the better
solution is the one that gives the smaller cut size.

The spectral bisection method is quite fast. The first
eigenvectors of the Laplacian can be computed by us-
ing the Lanczos method (Lanczos, 1950), that scales as
m/(λ3−λ2), where m is the number of edges of the graph.
If the eigenvalues λ2 and λ3 are well separated, the run-
ning time of the algorithm is much shorter than the time
required to calculate the complete set of eigenvectors,
which scales as O(n3). The method gives in general good
partitions, that can be further improved by applying the
Kernighan-Lin algorithm.

The well known max-flow min-cut theorem by Ford
and Fulkerson (Ford and Fulkerson, 1956) states that
the minimum cut between any two vertices s and t of
a graph, i.e. any minimal subset of edges whose deletion
would topologically separate s from t, carries the maxi-
mum flow that can be transported from s to t across the
graph. In this context edges play the role of water pipes,
with a given carrying capacity (e.g. their weights), and
vertices the role of pipe junctions. This theorem has been
used to determine minimal cuts from maximal flows in

www.manaraa.com

17

clustering algorithms. There are several efficient routines
to compute maximum flows in graphs, like the algorithm
of Goldberg and Tarjan (Goldberg and Tarjan, 1988).
Flake et al. (Flake et al., 2000; Flake et al., 2002) have
recently used maximum flows to identify communities in
the graph of the World Wide Web. The Web graph is
directed but for the purposes of the calculation Flake et
at. treated the edges as undirected. Web communities
are defined to be “strong” (LS-sets), i.e. the internal de-
gree of each vertex must not be smaller than its external
degree (Radicchi et al., 2004). An artificial sink t is added
to the graph and one calculates the maximum flows from
a source vertex s to the sink t: the corresponding mini-
mum cut identifies the community of vertex s, provided s
shares a sufficiently large number of edges with the other
vertices of its community, otherwise one could get trivial
separations and meaningless clusters.

Other popular methods for graph partitioning in-
clude level-structure partitioning, the geometric algo-
rithm, multilevel algorithms, etc. A good description of
these algorithms can be found in (Pothen, 1997).

Graphs can be also partitioned by minimizing mea-
sures that are affine to the cut size, like conductance (Bol-
lobas, 1998). The conductance Φ(C) of the subgraph C
of a graph G is defined as

Φ(C) =
c(C,G \ C)

min(kC , kG\C)
, (19)

where c(C,G \ C) is the cut size of C, and kC , kG\C are
the total degrees of C and of the rest of the graph G \ C,
respectively. Cuts are defined only between non-empty
sets, otherwise the measure would not be defined (as the
denominator in Eq. 19 would vanish). The minimum
of the conductance is obtained in correspondence of low
values of the cut size and of large values for the denom-
inator in Eq. 19, which peaks when the total degrees of
the two clusters are equal. In practical applications, es-
pecially on large graphs, close values of the total degrees
correspond to clusters of approximately equal size. The
problem of finding a cut with minimal conductance is
NP-hard (Š́ıma and Schaeffer, 2006). A similar measure
is the cut ratio (Wei and Cheng, 1989), which is defined
as

Φ(C) =
c(C,G \ C)
nCnG\C

, (20)

where nC and nG\C are the number of vertices of the
two subgraphs. As for the conductance, minimizing
the cut ratio favors partitions into clusters of approxi-
mately equal size. On the other hand, graph partition-
ing requires preliminary assumptions on the cluster sizes,
whereas the minimization of both the conductance and
the cut ratio do not. The optimization of the cut ratio
is an NP-hard problem (Matula and Shahrokhi, 1990).
The cut ratio has been used in several spectral meth-
ods for graph partitioning (Chan et al., 1993; Hagen and
Kahng, 1992).

Algorithms for graph partitioning are not good for
community detection, because it is necessary to provide
as input both the number of groups and their size, about
which in principle one knows nothing. Instead, one would
like an algorithm capable to produce this information in
its output. Besides, from the methodological point of
view, using iterative bisectioning to split the graph in
more pieces is not a reliable procedure. For instance, a
split into three clusters is necessarily obtained by break-
ing either cluster of the original bipartition in two parts,
whereas in many cases a minimum cut partition is ob-
tained if the third cluster is a merger of parts of both
initial clusters.

B. Hierarchical clustering

In general, very little is known about the community
structure of a graph. It is uncommon to know the num-
ber of clusters in which the graph is split, or other in-
dications about the membership of the vertices. In such
cases clustering procedures like graph partitioning meth-
ods can hardly be of help, and one is forced to make some
reasonable assumptions about the number and size of the
clusters, which are often unjustified. On the other hand,
the graph at hand may have a hierarchical structure, i.e.
may display several levels of grouping of the vertices, with
small clusters included within large clusters, which are in
turn included in larger clusters, and so on. Social net-
works, for instance, often have a hierarchical structure
(Section III.C.1). In such cases, one may use hierarchical
clustering algorithms (Hastie et al., 2001), i.e. cluster-
ing techniques that reveal the multilevel structure of the
graph. Hierarchical clustering is very common in social
network analysis, biology, engineering, marketing, etc.

The starting point of any hierarchical clustering
method is the definition of a similarity measure between
vertices. After a measure is chosen, one computes the
similarity for each pair of vertices, no matter if they are
connected or not. At the end of this process, one is left
with a new n×n matrix X, the similarity matrix. In Sec-
tion III.B.4 we have listed several possible definitions of
similarity. Hierarchical clustering techniques aim at iden-
tifying groups of vertices with high similarity, and can be
classified in two categories:

1. Agglomerative algorithms, in which clusters are it-
eratively merged if their similarity is sufficiently
high;

2. Divisive algorithms, in which clusters are iteratively
split by removing edges connecting vertices with
low similarity.

The two classes refer to opposite processes: agglomera-
tive algorithms are bottom-up, as one starts from the ver-
tices as separate clusters (singletons) and ends up with
the graph as a unique cluster; divisive algorithms are
top-down as they follow the opposite direction. Divisive

www.manaraa.com

18

techniques are rarely used, so we shall concentrate here
on agglomerative algorithms.

Since clusters are merged based on their mutual sim-
ilarity, it is essential to define a measure that estimates
how similar clusters are, out of the matrix X. This in-
volves some arbitrariness and several prescriptions exist.
In single linkage clustering, the similarity between two
groups is the minimum element xij , with i in one group
and j in the other. On the contrary, the maximum el-
ement xij for vertices of different groups is used in the
procedure of complete linkage clustering. In average link-
age clustering one has to compute the average of the xij .

The procedure can be better illustrated by means of
dendrograms (Section III.C.1), like the one in Fig. 8.
Sometimes, stopping conditions are imposed to select a
partition or a group of partitions that satisfy a special
criterion, like a given number of clusters or the optimiza-
tion of a quality function (e.g. modularity).

Hierarchical clustering has the advantage that it does
not require a preliminary knowledge on the number and
size of the clusters. However, it does not provide a way
to discriminate between the many partitions obtained by
the procedure, and to choose that or those that better
represent the community structure of the graph. The
results of the method depend on the specific similarity
measure adopted. The procedure also yields a hierarchi-
cal structure by construction, which is rather artificial
in most cases, since the graph at hand may not have a
hierarchical structure at all. Moreover, vertices of a com-
munity may not be correctly classified, and in many cases
some vertices are missed even if they have a central role
in their clusters (Newman, 2004a). Another problem is
that vertices with just one neighbor are often classified
as separated clusters, which in most cases does not make
sense. Finally, a major weakness of agglomerative hier-
archical clustering is that it does not scale well. If points
are embedded in space, so that one can use the distance
as dissimilarity measure, the computational complexity
is O(n2) for single linkage, O(n2 log n) for the complete
and average linkage schemes. For graph clustering, where
a distance is not trivially defined, the complexity can be-
come much heavier if the calculation of the chosen simi-
larity measure is costly.

C. Partitional clustering

Partitional clustering indicates another popular class
of methods to find clusters in a set of data points. Here,
the number of clusters is preassigned, say k. The points
are embedded in a metric space, so that each vertex is
a point and a distance measure is defined between pairs
of points in the space. The distance is a measure of dis-
similarity between vertices. The goal is to separate the
points in k clusters such to maximize/minimize a given
cost function based on distances between points and/or
from points to centroids, i.e. suitably defined positions in
space. Some of the most used functions are listed below:

• Minimum k-clustering. The cost function here is
the diameter of a cluster, which is the largest dis-
tance between two points of a cluster. The points
are classified such that the largest of the k cluster
diameters is the smallest possible. The idea is to
keep the clusters very “compact”.

• k-clustering sum. Same as minimum k-clustering,
but the diameter is replaced by the average distance
between all pairs of points of a cluster.

• k-center. For each cluster i one defines a refer-
ence point xi, the centroid, and computes the max-
imum di of the distances of each cluster point from
the centroid. The clusters and centroids are self-
consistently chosen such to minimize the largest
value of di.

• k-median. Same as k-center, but the maximum dis-
tance from the centroid is replaced by the average
distance.

The most popular partitional technique in the literature
is k-means clustering (MacQueen, 1967). Here the cost
function is the total intra-cluster distance, or squared
error function

k∑
i=1

∑
xj∈Si

||xj − ci||2, (21)

where Si indicates the subset of points of the i-th cluster
and ci its centroid. The k-means problem can be simply
solved with the Lloyd’s algorithm (Lloyd, 1982). One
starts from an initial distribution of centroids such that
they are as far as possible from each other. In the first
iteration, each vertex is assigned to the nearest centroid.
Next, the centers of mass of the k clusters are estimated
and become a new set of centroids, which allows for a new
classification of the vertices, and so on. After a small
number of iterations, the positions of the centroids are
stable, and the clusters do not change any more. The
solution found is not optimal, and it strongly depends on
the initial choice of the centroids. Nevertheless, Lloyd’s
heuristic has remained popular due to its quick conver-
gence, which makes it suitable for the analysis of large
data sets. The result can be improved by performing
more runs starting from different initial conditions, and
picking the solution which yields the minimum value of
the total intra-cluster distance.

Another popular technique, similar in spirit to k-means
clustering, is fuzzy k-means clustering (Bezdek, 1981;
Dunn, 1973). This method accounts for the fact that
a point may belong to two or more clusters at the same
time and is widely used in pattern recognition. The as-
sociated cost function is

Jm =
n∑
i=1

k∑
j=1

umij ||xi − cj||2, (22)

www.manaraa.com

19

where uij is the membership matrix, which measures the
degree of membership of point i (with position xi) in
cluster j, m is a real number greater than 1 and cj is the
center of cluster j

cj =

∑n
i=1 u

m
ijxi∑n

i=1 u
m
ij

. (23)

The matrix uij is normalized so that the sum of the mem-
berships of every point in all clusters yields one. The
membership uij is related to the distance of point i from
the center of cluster j, as it is reasonable to assume that
the larger this distance, the lower uij . This can be ex-
pressed by the following relation

uij =
1∑k

l=1

(
||xi−cj||
||xi−cl||

) 2
m−1

. (24)

The cost function Jm can be minimized by iterating
Eqs. 23 and 24. One starts from some initial guess for
uij and uses Eq. 23 to compute the centers, which are
then plugged back into Eqs. 24, and so on. The pro-
cess stops when the corresponding elements of the mem-
bership matrix in consecutive iterations differ from each
other by less than a predefined tolerance. It can be shown
that this procedure indeed delivers a local minimum of
the cost function Jm of Eq. 22. This procedure has the
same problems of Lloyd’s algorithm for k-means cluster-
ing, i.e. the minimum is a local minimum, and depends
on the initial choice of the matrix uij .

The limitation of partitional clustering is the same as
that of the graph partitioning algorithms: the number of
clusters must be specified at the beginning, the method
is not able to derive it. In addition, the embedding in a
metric space can be natural for some graphs, but rather
artificial for others.

V. DIVISIVE ALGORITHMS

A simple way to identify communities in a graph is to
detect the edges that connect vertices of different com-
munities and remove them, so that the clusters get dis-
connected from each other. This is the philosophy of
divisive algorithms. The crucial point is to find a prop-
erty of intercommunity edges that could allow for their
identification. Divisive methods do not introduce sub-
stantial conceptual advances with respect to traditional
techniques, as they just perform hierarchical clustering
on the graph at study (Section IV.B). The main differ-
ence with divisive hierarchical clustering is that here one
removes inter-cluster edges instead of edges between pairs
of vertices with low similarity and there is no guarantee a
priori that inter-cluster edges connect vertices with low
similarity. In some cases vertices (with all their adja-
cent edges) or whole subgraphs may be removed, instead
of single edges. Being hierarchical clustering techniques,
it is customary to represent the resulting partitions by
means of dendrograms.

A. The algorithm of Girvan and Newman

The most popular algorithm is that proposed by Gir-
van and Newman (Girvan and Newman, 2002; Newman
and Girvan, 2004). The method is historically important,
because it marked the beginning of a new era in the field
of community detection and opened this topic to physi-
cists. Here edges are selected according to the values of
measures of edge centrality, estimating the importance of
edges according to some property or process running on
the graph. The steps of the algorithm are:

1. Computation of the centrality for all edges;

2. Removal of edge with largest centrality: in case
of ties with other edges, one of them is picked at
random;

3. Recalculation of centralities on the running graph;

4. Iteration of the cycle from step 2.

Girvan and Newman focused on the concept of between-
ness, which is a variable expressing the frequency of the
participation of edges to a process. They considered
three alternative definitions: geodesic edge betweenness,
random-walk edge betweenness and current-flow edge be-
tweenness. In the following we shall refer to them as edge
betweenness, random-walk betweenness and current-flow
betweenness, respectively.

Edge betweenness is the number of shortest paths be-
tween all vertex pairs that run along the edge. It is an
extension to edges of the popular concept of site between-
ness, introduced by Freeman in 1977 (Freeman, 1977)
and expresses the importance of edges in processes like
information spreading, where information usually flows
through shortest paths. Historically edge betweenness
was introduced before site betweenness in a never pub-
lished technical report by Anthonisse (Anthonisse, 1971).
It is intuitive that intercommunity edges have a large
value of the edge betweenness, because many shortest
paths connecting vertices of different communities will
pass through them (Fig. 10). As in the calculation of
site betweenness, if there are two or more geodesic paths
with the same endpoints that run through an edge, the
contribution of each of them to the betweenness of the
edge must be divided by the multiplicity of the paths,
as one assumes that the signal/information propagates
equally along each geodesic path. The betweenness of all
edges of the graph can be calculated in a time that scales
as O(mn), or O(n2) on a sparse graph, with techniques
based on breadth-first-search (Brandes, 2001; Newman
and Girvan, 2004; Zhou et al., 2006).

In the context of information spreading, one could
imagine that signals flow across random rather than
geodesic paths. In this case the betweenness of an edge
is given by the frequency of the passages across the edge
of a random walker running on the graph (random-walk
betweenness). A random walker moving from a vertex
follows each adjacent edge with equal probability. A pair

www.manaraa.com

20

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������

������
������
������

FIG. 10 Edge betweenness is highest for edges connecting
communities. In the figure, the edge in the middle has a
much higher betweenness than all other edges, because all
shortest paths connecting vertices of the two communities run
through it. Reprinted figure with permission from (Fortunato
and Castellano, 2009). c©2009 by Springer.

of vertices is chosen at random, s and t. The walker starts
at s and keeps moving until it hits t, where it stops. One
computes the probability that each edge was crossed by
the walker, and averages over all possible choices for the
vertices s and t. It is meaningful to compute the net
crossing probability, which is proportional to the num-
ber of times the walk crossed the edge in one direction.
In this way one neglects back and forth passages that
are accidents of the random walk and tell nothing about
the centrality of the edge. Calculation of random-walk
betweenness requires the inversion of an n × n matrix
(once), followed by obtaining and averaging the flows for
all pairs of nodes. The first task requires a time O(n3),
the second O(mn2), for a total complexity O((m+n)n2),
or O(n3) for a sparse matrix. The complete calculation
requires a time O(n3) on a sparse graph.

Current-flow betweenness is defined by considering the
graph a resistor network, with edges having unit resis-
tance. If a voltage difference is applied between any two
vertices, each edge carries some amount of current, that
can be calculated by solving Kirchoff’s equations. The
procedure is repeated for all possible vertex pairs: the
current-flow betweenness of an edge is the average value
of the current carried by the edge. It is possible to show
that this measure is equivalent to random-walk between-
ness, as the voltage differences and the random walks net
flows across the edges satisfy the same equations (New-
man, 2005). Therefore, the calculation of current-flow
betweenness has the same complexity O((m + n)n2), or
O(n3) for a sparse graph.

Calculating edge betweenness is much faster than
current-flow or random walk betweenness (O(n2) versus
O(n3) on sparse graphs). In addition, in practical ap-
plications the Girvan-Newman algorithm with edge be-
tweenness gives better results than adopting the other
centrality measures (Newman and Girvan, 2004). Nu-
merical studies show that the recalculation step 3 of
Girvan-Newman algorithm is essential to detect mean-
ingful communities. This introduces an additional factor
m in the running time of the algorithm: consequently,
the edge betweenness version scales as O(m2n), or O(n3)
on a sparse graph. On graphs with strong community

structure, that quickly break into communities, the re-
calculation step needs to be performed only within the
connected component including the last removed edge
(or the two components bridged by it if the removal of
the edge splits a subgraph), as the edge betweenness of all
other edges remains the same. This can help saving some
computer time, although it is impossible to give estimates
of the gain since it depends on the specific graph at hand.
Nevertheless, the algorithm is quite slow, and applicable
to sparse graphs with up to n ∼ 10000 vertices, with
current computational resources. In the original version
of Girvan-Newman’s algorithm (Girvan and Newman,
2002), the authors had to deal with the whole hierar-
chy of partitions, as they had no procedure to say which
partition is the best. In a successive refinement (New-
man and Girvan, 2004), they selected the partition with
the largest value of modularity (see Section III.C.2), a
criterion that has been frequently used ever since. The
method can be simply extended to the case of weighted
graphs, by suitably generalizing the edge betweenness.
The betweenness of a weighted edge equals the between-
ness of the edge in the corresponding unweighted graph,
divided by the weight of the edge (Newman, 2004). There
have been countless applications of the Girvan-Newman
method: the algorithm is now integrated in well known
libraries of network analysis programs.

Tyler, Wilkinson and Huberman proposed a modifica-
tion of the Girvan-Newman algorithm, to improve the
speed of the calculation (Tyler et al., 2003; Wilkinson
and Huberman, 2004). The gain in speed was required
by the analysis of graphs of gene co-occurrences, which
are too large to be analyzed by the algorithm of Girvan
and Newman. Algorithms computing site/edge between-
ness start from any vertex, taken as center, and compute
the contribution to betweenness from all paths originat-
ing at that vertex; the procedure is then repeated for
all vertices (Brandes, 2001; Newman and Girvan, 2004;
Zhou et al., 2006). Tyler et al. proposed to calculate
the contribution to edge betweenness only from a limited
number of centers, chosen at random, deriving a sort of
Monte Carlo estimate. Numerical tests indicate that, for
each connected subgraph, it suffices to pick a number of
centers growing as the logarithm of the number of ver-
tices of the component. For a given choice of the centers,
the algorithm proceeds just like that of Girvan and New-
man. The stopping criterion is different, though, as it
does not require the calculation of modularity on the re-
sulting partitions, but relies on a particular definition of
community. According to such definition, a connected
subgraph with n0 vertices is a community if the edge be-
tweenness of any of its edges does not exceed n0 − 1. In-
deed, if the subgraph consists of two parts connected by a
single edge, the betweenness value of that edge would be
greater than or equal to n0−1, with the equality holding
only if one of the two parts consists of a single vertex.
Therefore, the condition on the betweenness of the edges
would exclude such situations, although other types of
cluster structures might still be compatible with it. In

www.manaraa.com

21

this way, in the method of Tyler et al., edges are removed
until all connected components of the partition are “com-
munities” in the sense explained above. The Monte Carlo
sampling of the edge betweenness necessarily induces sta-
tistical errors. As a consequence, the partitions are in
general different for different choices of the set of center
vertices. However, the authors showed that, by repeat-
ing the calculation many times, the method gives good
results on a network of gene co-occurrences (Wilkinson
and Huberman, 2004), with a substantial gain of com-
puter time. The technique has been also applied to a
network of people corresponding via email (Tyler et al.,
2003). In practical examples, only vertices lying at the
boundary between communities may not be clearly clas-
sified, and be assigned sometimes to a group, sometimes
to another. This is actually a nice feature of the method,
as it allows to identify overlaps between communities, as
well as the degree of membership of overlapping vertices
in the clusters they belong to. The algorithm of Gir-
van and Newman, which is deterministic, is unable to
accomplish this. Chen and Yuan have pointed out that
counting all possible shortest paths in the calculation of
the edge betweenness may lead to unbalanced partitions,
with communities of very different size, and proposed to
count only non-redundant paths, i.e. paths whose end-
points are all different from each other: the resulting
betweenness yields better results than standard edge be-
tweenness for mixed clusters on the benchmark graphs
of Girvan and Newman (Chen and Yuan, 2006). Holme
et al. have used a modified version of the algorithm in
which vertices, rather than edges, are removed (Holme
et al., 2003). A centrality measure for the vertices, pro-
portional to their site betweenness, and inversely propor-
tional to their indegree, is chosen to identify boundary
vertices, which are then iteratively removed with all their
edges. This modification, applied to study the hierarchi-
cal organization of biochemical networks, is motivated by
the need to account for reaction kinetic information, that
simple site betweenness does not include. The indegree
of a vertex is solely used because it indicates the number
of substrates to a metabolic reaction involving that ver-
tex; for the purpose of clustering the graph is considered
undirected, as usual.

The algorithm of Girvan and Newman is unable to
find overlapping communities, as each vertex is assigned
to a single cluster. Pinney and Westhead have proposed
a modification of the algorithm in which vertices can
be split between communities (Pinney and Westhead,
2006). To do that, they also compute the betweenness
of all vertices of the graph. Unfortunately the values of
edge and site betweenness cannot be simply compared,
due to their different normalization, but the authors re-
marked that the two endvertices of an inter-cluster edge
should have similar betweenness values, as the shortest
paths crossing one of them are likely to reach the other
one as well through the edge. So they take the edge with
largest betweenness and remove it only if the ratio of the
betweenness values of its endvertices is between α and

1/α, with α = 0.8. Otherwise, the vertex with highest
betweenness (with all its adjacent edges) is temporarily
removed. When a subgraph is split by vertex or edge
removal, all deleted vertices belonging to that subgraph
are “copied” in each subcomponent, along with all their
edges. Gregory (Gregory, 2007) has proposed a similar
approach, named CONGA (Cluster Overlap Newman-
Girvan Algorithm), in which vertices are split among
clusters if their site betweenness exceeds the maximum
value of the betweenness of the edges. A vertex is split
by assigning some of its edges to one of its duplicates,
and the rest to the other. There are several possibilities
to do that, Gregory proposed to go for the split that
yields the maximum of a new centrality measure, called
split betweenness, which is the number of shortest paths
that would run between two parts of a vertex if the latter
were split. The method has a worst-case complexity
O(m3), or O(n3) on a sparse graph, like the algorithm
of Girvan and Newman. The code can be found at
http://www.cs.bris.ac.uk/∼steve/networks/index.
html.

B. Other methods

Another promising track to detect inter-cluster edges
is related to the presence of cycles, i.e. closed non-
intersecting paths, in the graph. Communities are char-
acterized by a high density of edges, so it is reasonable
to expect that such edges form cycles. On the contrary,
edges lying between communities will hardly be part of
cycles. Based on this intuitive idea, Radicchi et al. pro-
posed a new measure, the edge clustering coefficient, such
that low values of the measure are likely to correspond to
intercommunity edges (Radicchi et al., 2004). The edge
clustering coefficient generalizes to edges the notion of
clustering coefficient introduced by Watts and Strogatz
for vertices (Watts and Strogatz, 1998) (Fig. 11). In Sec-
tion A.1 we have seen that the clustering coefficient of
a vertex is the number of triangles including the vertex
divided by the number of possible triangles that can be
formed. The edge clustering coefficient is defined as

C̃
(g)
i,j =

z
(g)
i,j + 1

s
(g)
i,j

, (25)

where i and j are the extremes of the edge, z(g)
i,j the

number of cycles of length g built upon edge ij and s
(g)
i,j

the possible number of cycles of length g that one could
build based on the existing edges of i, j and their neigh-
bors. The number of actual cycles in the numerator is
augmented by 1 to enable a ranking among edges with-
out cycles, which would all yield a coefficient C̃(g)

i,j equal
to zero, independently of the degrees of the extremes
i and j and their neighbors. Usually, cycles of length
g = 3 (triangles) or 4 are considered. The measure is
(anti)correlated with edge betweenness: edges with low

www.manaraa.com

22

FIG. 11 Schematic illustration of the edge clustering coef-
ficient introduced by Radicchi et al. (Radicchi et al., 2004).
The two grey vertices have five and six other neighbors, re-
spectively. Of the five possible triangles based on the edge
connecting the grey vertices, three are actually there, yield-
ing an edge clustering coefficient C3 = 3/5. Courtesy by F.
Radicchi.

edge clustering coefficient usually have high betweenness
and vice versa, although the correlation is not perfect.
The method works as the algorithm by Girvan and New-
man. At each iteration, the edge with smallest clustering
coefficient is removed, the measure is recalculated again,
and so on. If the removal of an edge leads to a split
of a subgraph in two parts, the split is accepted only
if both clusters are LS-sets (“strong”) or “weak” com-
munities (see Section III.B.2). The verification of the
community condition on the clusters is performed on the
full adjacency matrix of the initial graph. If the condi-
tion were satisfied only for one of the two clusters, the
initial subgraph may be a random graph, as it can be
easily seen that by cutting a random graph á la Erdös
and Rényi in two parts, the larger of them is a strong (or
weak) community with very high probability, whereas the
smaller part is not. Enforcing the community condition
on both clusters, it is more likely that the subgraph to
be split indeed has a cluster structure. Therefore, the al-
gorithm stops when all clusters produced by the edge re-
movals are communities in the strong or weak sense, and
further splits would violate this condition. The authors
suggested to use the same stopping criterion for the al-
gorithm of Girvan and Newman, to get structurally well-
defined clusters. Since the edge clustering coefficient is a
local measure, involving at most an extended neighbor-
hood of the edge, it can be calculated very quickly. The
running time of the algorithm to completion isO(m4/n2),
or O(n2) on a sparse graph, if g is small, so it is much
shorter than the running time of the Girvan-Newman
method. The recalculation step becomes slow if g is not
so small, as in this case the number of edges whose co-
efficient needs to be recalculated may reach a sizeable
fraction of the edges of the graph; likewise, counting the

number of cycles based on one edge becomes lengthier.
If g ∼ 2d, where d is the diameter of the graph (which
is usually a small number for real networks), the cycles
span the whole graph and the measure becomes global
and no more local. The computational complexity in
this case exceeds that of the algorithm of Girvan and
Newman, but it can come close to it for practical pur-
poses even at lower values of g. So, by tuning g one can
smoothly interpolate between a local and a global cen-
trality measure. The software of the algorithm can be
found in http://filrad.homelinux.org/Data/. In a
successive paper (C. Castellano et al., 2004) the authors
extended the method to the case of weighted networks,
by modifying the edge clustering coefficient of Eq. 25,
in that the number of cycles z(g)

i,j is multiplied by the
weight of the edge ij. The definitions of strong and
weak communities can be trivially extended to weighted
graphs by replacing the internal/external degrees of the
vertices/clusters with the corresponding strengths. More
recently, the method has been extended to bipartite net-
works (Zhang et al., 2007), where only cycles of even
length are possible (g = 4, 6, 8, etc.). The algorithm by
Radicchi et al. may give poor results when the graph has
few cycles, as it happens in some social and many non-
social networks. In this case, in fact, the edge clustering
coefficient is small and fairly similar for all edges, and
the algorithm may fail to identify the bridges between
communities.

An alternative measure of centrality for edges is in-
formation centrality. It is based on the concept of ef-
ficiency (Latora and Marchiori, 2001), which estimates
how easily information travels on a graph according to
the length of shortest paths between vertices. The effi-
ciency of a network is defined as the average of the inverse
distances between all pairs of vertices. If the vertices are
“close” to each other, the efficiency is high. The informa-
tion centrality of an edge is the relative variation of the
efficiency of the graph if the edge is removed. In the al-
gorithm by Fortunato, Latora and Marchiori (Fortunato
et al., 2004), edges are removed according to decreasing
values of information centrality. The method is analogous
to that of Girvan and Newman. Computing the informa-
tion centrality of an edge requires the calculation of the
distances between all pairs of vertices, which can be done
with breadth-first-search in a time O(mn). So, in order
to compute the information centrality of all edges one re-
quires a time O(m2n). At this point one removes the edge
with the largest value of information centrality and recal-
culates the information centrality of all remaining edges
with respect to the running graph. Since the procedure is
iterated until there are no more edges in the network, the
final complexity is O(m3n), or O(n4) on a sparse graph.
The partition with the largest value of modularity is cho-
sen as most representative of the community structure of
the graph. The method is much slower than the algo-
rithm of Girvan and Newman. Partitions obtained with
both techniques are rather consistent, mainly because in-
formation centrality has a strong correlation with edge

www.manaraa.com

23

betweenness. The algorithm by Fortunato et al. gives
better results when communities are mixed, i.e. with a
high degree of interconnectedness, but it tends to isolate
leaf vertices and small loosely bound subgraphs.

A measure of vertex centrality based on loops, similar
to the clustering coefficient by Watts and Strogatz (Watts
and Strogatz, 1998), has been introduced by Vragoviĉ
and Louis (Vragović and Louis, 2006). The idea is that
neighbors of a vertex well inside a community are “close”
to each other, even in the absence of the vertex, due to
the high density of intra-cluster edges. Suppose that j
and k are neighbors of a vertex i: djk/i is the length of
a shortest path between j and k, if i is removed from
the graph. Naturally, the existence of alternative paths
to j − i − k implies the existence of loops in the graph.
Vragoviĉ and Louis defined the loop coefficient of i as
the average of 1/djk/i over all pairs of neighbors of i,
somewhat reminding of the concept of information cen-
trality used in the method by Fortunato et al. (Fortunato
et al., 2004). High values of the loop coefficient are likely
to identify core vertices of communities, whereas low val-
ues correspond to vertices lying at the boundary between
communities. Clusters are built around the vertices with
highest values of the loop coefficient. The method has
time complexity O(nm); its results are not so accurate,
as compared to popular clustering techniques.

VI. MODULARITY-BASED METHODS

Newman-Girvan modularity Q (Section III.C.2), orig-
inally introduced to define a stopping criterion for the
algorithm of Girvan and Newman, has rapidly become
an essential element of many clustering methods. Mod-
ularity is by far the most used and best known qual-
ity function. It represented one of the first attempts
to achieve a first principle understanding of the clus-
tering problem, and it embeds in its compact form all
essential ingredients and questions, from the definition
of community, to the choice of a null model, to the ex-
pression of the “strength” of communities and partitions.
In this section we shall focus on all clustering techniques
that require modularity, directly and/or indirectly. We
will examine fast techniques that can be used on large
graphs, but which do not find good optima for the mea-
sure (Clauset et al., 2004; Newman, 2004b; Noack and
Rotta, 2008; Schuetz and Caflisch, 2008a,a; Wakita and
Tsurumi, 2007); more accurate methods, which are com-
putationally demanding (Guimerà et al., 2004; Massen
and Doye, 2005; Medus et al., 2005); algorithms giving
a good tradeoff between high accuracy and low complex-
ity (Duch and Arenas, 2005; Lehmann and Hansen, 2007;
Newman, 2006b). We shall also point out other proper-
ties of modularity, discuss some extensions/modifications
of it, as well as highlight its limits.

A. Modularity optimization

By assumption, high values of modularity indicate
good partitions5. So, the partition corresponding to its
maximum value on a given graph should be the best, or
at least a very good one. This is the main motivation
for modularity maximization, perhaps the most popular
class of methods to detect communities in graphs. An
exhaustive optimization of Q is impossible, due to the
huge number of ways in which it is possible to partition
a graph, even when the latter is small. Besides, the true
maximum is out of reach, as it has been recently proved
that modularity optimization is an NP-complete prob-
lem (Brandes et al., 2006), so it is probably impossible
to find the solution in a time growing polynomially with
the size of the graph. However, there are currently sev-
eral algorithms able to find fairly good approximations
of the modularity maximum in a reasonable time.

1. Greedy techniques

The first algorithm devised to maximize modularity
was a greedy method of Newman (Newman, 2004b). It
is an agglomerative hierarchical clustering method, where
groups of vertices are successively joined to form larger
communities such that modularity increases after the
merging. One starts from n clusters, each containing
a single vertex. Edges are not initially present, they are
added one by one during the procedure. However, the
modularity of partitions explored during the procedure
is always calculated from the full topology of the graph,
as we want to find the modularity maximum on the space
of partitions of the full graph. Adding a first edge to the
set of disconnected vertices reduces the number of groups
from n to n−1, so it delivers a new partition of the graph.
The edge is chosen such that this partition gives the max-
imum increase (minimum decrease) of modularity with
respect to the previous configuration. All other edges
are added based on the same principle. If the insertion
of an edge does not change the partition, i.e. the edge
is internal to one of the clusters previously formed, mod-
ularity stays the same. The number of partitions found
during the procedure is n, each with a different number
of clusters, from n to 1. The largest value of modularity
in this subset of partitions is the approximation of the
modularity maximum given by the algorithm. At each
iteration step, one needs to compute the variation ∆Q of
modularity given by the merger of any two communities
of the running partition, so that one can choose the best
merger. However, merging communities between which
there are no edges can never lead to an increase of Q,
so one has to check only the pairs of communities which
are connected by edges, of which there cannot be more

5 This is not true in general, as we shall discuss in Section VI.C.

www.manaraa.com

24

than m. Since the calculation of each ∆Q can be done
in constant time, this part of the calculation requires a
time O(m). After deciding which communities are to be
merged, one needs to update the matrix eij expressing
the fraction of edges between clusters i and j of the run-
ning partition (necessary to compute Q), which can be
done in a worst-case time O(n). Since the algorithm re-
quires n − 1 iterations (community mergers) to run to
completion, its complexity is O((m + n)n), or O(n2) on
a sparse graph, so it enables one to perform a clustering
analysis on much larger networks than the algorithm of
Girvan and Newman (up to an order of 100000 vertices
with current computers). In a later paper (Clauset et al.,
2004), Clauset et al. pointed out that the update of the
matrix eij in Newman’s algorithm involves a large num-
ber of useless operations, due to the sparsity of the adja-
cency matrix. This operation can be performed more ef-
ficiently by using data structures for sparse matrices, like
max-heaps, which rearrange the data in the form of bi-
nary trees. Clauset et al. maintained the matrix of mod-
ularity variations ∆Qij , which is also sparse, a max-heap
containing the largest elements of each row of the matrix
∆Qij as well as the labels of the corresponding commu-
nities, and a simple array whose elements are the sums
of the elements of each row of the old matrix eij . The
optimization of modularity can be carried out using these
three data structures, whose update is much quicker than
in Newman’s technique. The complexity of the algorithm
is O(md log n), where d is the depth of the dendrogram
describing the successive partitions found during the ex-
ecution of the algorithm, which grows as log n for graphs
with a strong hierarchical structure. For those graphs,
the running time of the method is then O(n log2 n), which
allows to analyse the community structure of very large
graphs, up to 106 vertices. The greedy optimization of
Clauset et al. is currently one of the few algorithms that
can be used to estimate the modularity maximum on such
large graphs. The code can be freely downloaded from
http://cs.unm.edu/∼aaron/research/fastmodulari
ty.htm.

This greedy optimization of modularity tends to form
quickly large communities at the expenses of small ones,
which often yields poor values of the modularity maxima.
Danon et al. suggested to normalize the modularity
variation ∆Q produced by the merger of two communi-
ties by the fraction of edges incident to one of the two
communities, in order to favor small clusters (Danon
et al., 2006). This trick leads to better modularity
optima as compared to the original recipe of Newman,
especially when communities are very different in size.
Wakita and Tsurumi (Wakita and Tsurumi, 2007) have
noticed that, due to the bias towards large communities,
the fast algorithm by Clauset et al. is inefficient, because
it yields very unbalanced dendrograms, for which the
relation d ∼ log n does not hold, and as a consequence
the method often runs at its worst-case complexity. To
improve the situation they proposed a modification in
which, at each step, one seeks the community merger

delivering the largest value of the product of the modu-
larity variation ∆Q times a factor (consolidation ratio),
that peaks for communities of equal size. In this way
there is a tradeoff between the gain in modularity and
the balance of the communities to merge, with a big gain
in the speed of the procedure, that enables the analysis
of systems with up to 107 vertices. Interestingly, this
modification often leads to better modularity maxima
than those found with the version of Clauset et al., at
least on large social networks. The code can be found at
http://www.is.titech.ac.jp/∼wakita/en/software/
community-analysis-software/. Another trick to
avoid the formation of large communities was proposed
by Schuetz and Caflisch and consists in allowing for the
merger of more community pairs, instead of one, at each
iteration (Schuetz and Caflisch, 2008a,b). This generates
several “centers” around which communities are formed,
which grow simultaneously so that a condensation into a
few large clusters is unlikely. This modified version of the
greedy algorithm is combined with a simple refinement
procedure in which single vertices are moved to the neigh-
boring community that yields the maximum increase of
modularity. The method has the same complexity of
the fast optimization by Clauset et al., but comes closer
to the modularity maximum. The software is available at
http://www.biochem-caflisch.uzh.ch/public/5/net
work-clusterization-algorithm.html. The accuracy
of the greedy optimization can be significantly improved
if the hierarchical agglomeration is started from some
reasonable intermediate configuration, rather than from
the individual vertices (Du et al., 2007; Pujol et al.,
2006). Higher-quality modularities can be also achieved
by applying refinement strategies based on local search
at various steps of the greedy agglomeration (Noack and
Rotta, 2008). Such refinement procedures are similar
to the technique proposed by Newman to improve
the results of his spectral optimization of modularity
((Newman, 2006b) and Section VI.A.4).

A different greedy approach has been introduced by
Blondel et al. (Blondel et al., 2008), for the general case
of weighted graphs. Initially, all vertices of the graph are
put in different communities. The first step consists of
a sequential sweep over all vertices. Given a vertex i,
one computes the gain in weighted modularity (Eq. 33)
coming from putting i in the community of its neighbor
j and picks the community of the neighbor that yields
the largest increase of Q, as long as it is positive. At the
end of the sweep, one obtains the first level partition. In
the second step communities are replaced by superver-
tices, and two supervertices are connected if there is at
least an edge between vertices of the corresponding com-
munities. In this case, the weight of the edge between
the supervertices is the sum of the weights of the edges
between the represented communities at the lower level.
The two steps of the algorithm are then repeated, yield-
ing new hierarchical levels and supergraphs (Fig. 12).

We remark that modularity is always computed from
the initial graph topology: operating on supergraphs en-

www.manaraa.com

25

FIG. 12 Hierarchical optimization of modularity by Blondel et al. (Blondel et al., 2008). The diagram shows two iterations of
the method, starting from the graph on the left. Each iteration consists of a step, in which every vertex is assigned to the (local)
cluster that produces the largest modularity increase, followed by a successive transformation of the clusters into vertices of a
(weighted) graph, representing the next higher hierarchical level. Reprinted figure with permission from (Blondel et al., 2008).
c©2008 by IOP Publishing and SISSA.

ables one to consider the variations of modularity for par-
titions of the original graph after merging and/or split-
ting of groups of vertices. Therefore, at some iteration,
modularity cannot increase anymore, and the algorithm
stops. The technique is more limited by storage demands
than by computational time. The latter grows like O(m),
so the algorithm is extremely fast and graphs with up
to 109 edges can be analyzed in a reasonable time on
current computational resources. The software can be
found at http://findcommunities.googlepages.com/.
The modularity maxima found by the method are bet-
ter than those found with the greedy techniques by
Clauset et al. (Clauset et al., 2004) and Wakita and
Tsurumi (Wakita and Tsurumi, 2007). However, clos-
ing communities within the immediate neighborhood of
vertices may be inaccurate and yield spurious partitions
in practical cases. So, it is not clear whether some of the
intermediate partitions could correspond to meaningful
hierarchical levels of the graph. Moreover, the results
of the algorithm depend on the order of the sequential
sweep over the vertices.

We conclude by stressing that, despite the improve-
ments and refinements of the last years, the accuracy of
greedy optimization is not that good, as compared with

other techniques.

2. Simulated annealing

Simulated annealing (Kirkpatrick et al., 1983) is a
probabilistic procedure for global optimization used in
different fields and problems. It consists in performing
an exploration of the space of possible states, looking for
the global optimum of a function F , say its maximum.
Transitions from one state to another occur with proba-
bility 1 if F increases after the change, otherwise with a
probability exp(β∆F), where ∆F is the decrease of the
function and β is an index of stochastic noise, a sort of
inverse temperature, which increases after each iteration.
The noise reduces the risk that the system gets trapped
in local optima. At some stage, the system converges to a
stable state, which can be an arbitrarily good approxima-
tion of the maximum of F , depending on how many states
were explored and how slowly β is varied. Simulated an-
nealing was first employed for modularity optimization
by Guimerà et al. (Guimerà et al., 2004). Its standard
implementation (Guimerà and Amaral, 2005) combines
two types of “moves”: local moves, where a single vertex

www.manaraa.com

26

is shifted from one cluster to another, taken at random;
global moves, consisting of mergers and splits of com-
munities. Splits can be carried out in several distinct
ways. The best performance is achieved if one optimizes
the modularity of a bipartition of the cluster, taken as
an isolated graph. This is done again with simulated an-
nealing, where one considers only individual vertex move-
ments, and the temperature is decreased until it reaches
the running value for the global optimization. Global
moves reduce the risk of getting trapped in local min-
ima and they have proven to lead to much better optima
than using simply local moves (Massen and Doye, 2005;
Medus et al., 2005). In practical applications, one typi-
cally combines n2 local moves with n global ones in one
iteration. The method can potentially come very close
to the true modularity maximum, but it is slow. The
actual complexity cannot be estimated, as it heavily de-
pends on the parameters chosen for the optimization (ini-
tial temperature, cooling factor), not only on the graph
size. Simulated annealing can be used for small graphs,
with up to about 104 vertices.

3. Extremal optimization

Extremal optimization (EO) is a heuristic search pro-
cedure proposed by Boettcher and Percus (Boettcher and
Percus, 2001), in order to achieve an accuracy compara-
ble with simulated annealing, but with a substantial gain
in computer time. It is based on the optimization of local
variables, expressing the contribution of each unit of the
system to the global function at study. This technique
was used for modularity optimization by Duch and Are-
nas (Duch and Arenas, 2005). Modularity can be indeed
written as a sum over the vertices: the local modularity
of a vertex is the value of the corresponding term in this
sum. A fitness measure for each vertex is obtained by
dividing the local modularity of the vertex by its degree,
as in this case the measure does not depend on the de-
gree of the vertex and is suitably normalized. One starts
from a random partition of the graph in two groups with
the same number of vertices. At each iteration, the ver-
tex with the lowest fitness is shifted to the other cluster.
The move changes the partition, so the local fitnesses of
many vertices need to be recalculated. The process con-
tinues until the global modularity Q cannot be improved
any more by the procedure. This technique reminds one
of the Kernighan-Lin (Kernighan and Lin, 1970) algo-
rithm for graph partitioning (Section IV.A), but here
the sizes of the communities are determined by the pro-
cess itself, whereas in graph partitioning they are fixed
from the beginning. After the bipartition, each cluster
is considered as a graph on its own and the procedure is
repeated, as long as Q increases for the partitions found.
The procedure, as described, proceeds deterministically
from the given initial partition, as one shifts systemati-
cally the vertex with lowest fitness, and is likely to get
trapped in local optima. Better results can be obtained if

one introduces a probabilistic selection, in which vertices
are ranked based on their fitness values and one picks
the vertex of rank q with the probability P (q) ∼ q−τ

(τ -EO, (Boettcher and Percus, 2001)). The algorithm
finds very good estimates of the modularity maximum,
and performs very well on the benchmark of Girvan and
Newman (Girvan and Newman, 2002) (Section XIV.A) .
Ranking the fitness values has a cost O(n log n), which
can be reduced to O(n) if heap data structures are used.
Choosing the vertex to be shifted can be done with a
binary search, which amounts to an additional factor
O(log n). Finally, the number of steps needed to ver-
ify whether the running modularity maximum can be
improved or not is also O(n). The total complexity of
the method is then O(n2 log n). We conclude that EO
represents a good tradeoff between accuracy and speed,
although the use of recursive bisectioning may lead to
poor results on large networks with many communities.

4. Spectral optimization

Modularity can be optimized using the eigenvalues and
eigenvectors of a special matrix, the modularity matrix
B, whose elements are

Bij = Aij −
kikj
2m

. (26)

Here the notation is the same used in Eq. 13. Let s be
the vector representing any partition of the graph in two
clusters A and B: si = +1 if vertex i belongs to A,
si = −1 if i belongs to B. Modularity can be written as

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj)

=
1

4m

∑
ij

(
Aij −

kikj
2m

)
(sisj + 1)

=
1

4m

∑
ij

Bijsisj =
1

4m
sTBs. (27)

The last expression indicates standard matrix products.
The vector s can be decomposed on the basis of eigen-
vectors ui (i = 1, ..., n) of the modularity matrix B:
s =

∑
i aiui, with ai = uTi · s. By plugging this ex-

pression of s into Eq. 27 one finally gets

Q =
1

4m

∑
i

aiuTi B
∑
j

ajuj =
1

4m

n∑
i=1

(uTi · s)2βi, (28)

where βi is the eigenvalue of B corresponding to the
eigenvector ui. Eq. 28 is analogous to Eq. 18 for the
cut size of the graph partitioning problem. This sug-
gests that one can optimize modularity on bipartitions
via spectral bisection (Section IV.A), by replacing the
Laplacian matrix with the modularity matrix (Newman,
2006a,b). Like the Laplacian matrix, B has always the

www.manaraa.com

27

trivial eigenvector (1, 1, ..., 1) with eigenvalue zero, be-
cause the sum of the elements of each row/column of
the matrix vanishes. From Eq. 28 we see that, if B has
no positive eigenvalues, the maximum coincides with the
trivial partition consisting of the graph as a single cluster
(for which Q = 0), i.e. it has no community structure.
Otherwise, one has to look for the eigenvector of B with
largest (positive) eigenvalue, u1, and group the vertices
according to the signs of the components of u1, just like
in Section IV.A. Here, however, one does not need to
specify the sizes of the two groups: the vertices with pos-
itive components are all in one group, the others in the
other group. If, for example, the component of u1 cor-
responding to vertex i is positive, but we set si = −1,
the modularity is lower than by setting si = +1. The
values of the components of u1 are also informative, as
they indicate the level of the participation of the ver-
tices to their communities. In particular, components
whose values are close to zero lie at the border between
the two clusters and can be well considered as belonging
to both of them. The result obtained from the spectral
bipartition can be further improved by shifting single ver-
tices from one community to the other, such to have the
highest increase (or lowest decrease) of the modularity of
the resulting graph partition. This refinement technique,
similar to the Kernighan-Lin algorithm (Section IV.A),
can be also applied to improve the results of other op-
timization techniques (e.g. greedy algorithms, extremal
optimization, etc.). The procedure is repeated for each
of the clusters separately, and the number of communi-
ties increases as long as modularity does. At variance
with graph partitioning, where one needs to fix the num-
ber of clusters and their size beforehand, here there is a
clear-cut stopping criterion, represented by the fact that
cluster subdivisions are admitted only if they lead to a
modularity increase. We stress that modularity needs to
be always computed from the full adjacency matrix of the
original graph6. The drawback of the method is similar
as for spectral bisection, i.e. the algorithm gives the best
results for bisections, whereas it is less accurate when the
number of communities is larger than two. Recently, Sun
et al. (Sun et al., 2009) have added a step after each bi-
partition of a cluster, in that single vertices can be moved
from one cluster to another and even form the seeds of
new clusters. We remark that the procedure is differ-
ent from the Kernighan-Lin-like refining steps, as here
the number of clusters can change. This variant, which
does not increase the complexity of the original spectral
optimization, leads to better modularity maxima. More-
over, one does not need to stick to bisectioning, if other
eigenvectors with positive eigenvalues of the modularity

6 Richardson et al. (Richardson et al., 2008) have actually shown
that if one instead seeks the optimization of modularity for each
cluster, taken as an independent graph, the combination of spec-
tral bisectioning and the post-processing technique may yield
better results for the final modularity optima.

FIG. 13 Spectral optimization of modularity by New-
man (Newman, 2006a,b). By using the first two eigenvec-
tors of the modularity matrix, vertices can be represented as
points on a plane. By cutting the plane with a line pass-
ing through the origin (like the dotted line in the figure) one
obtains bipartitions of the graph with possibly high modular-
ity values. Reprinted figure with permission from (Newman,
2006a). c©2006 by the American Physical Society.

matrix are used. Given the first p eigenvectors, one can
construct n p-dimensional vectors, each corresponding to
a vertex: the components of the vector of vertex i are
proportional to the p entries of the eigenvectors in posi-
tion i. Then one can define community vectors, by sum-
ming the vectors of vertices in the same community. It is
possible to show that, if the vectors of two communities
form an angle larger that π/2, keeping the communities
separate yields larger modularity than if they are merged
(Fig. 13). In this way, in a p-dimensional space the mod-
ularity maximum corresponds to a partition in at most
p+ 1 clusters. In particular, if one takes the eigenvectors
corresponding to the two largest eigenvalues, one can ob-
tain a split of the graph in three clusters: in a recent
work, Richardson et al. presented a fast technique to
obtain graph tripartitions with large modularity along
these lines (Richardson et al., 2008). The eigenvectors
with the most negative eigenvalues can also be used to
extract useful information, like the presence of a possible
multipartite structure of the graph, as they give the most
relevant contribution to the modularity minimum.

The spectral optimization of modularity is quite fast.
The leading eigenvector of the modularity matrix can be
computed with the power method, by repeatedly mul-
tiplying B by an arbitrary vector (not orthogonal to
u1). The number of required iterations to reach con-
vergence is O(n). Each multiplication seems to require a

www.manaraa.com

28

time O(n2), as B is a complete matrix, but the peculiar
form of B allows for a much quicker calculation, taking
time O(m + n). So, a graph bipartition requires a time
O(n(m + n)), or O(n2) on a sparse graph. To find the
modularity optimum one needs a number of subsequent
bipartitions that equals the depth d of the resulting hier-
archical tree. In the worst-case scenario, d = O(n), but in
practical cases the procedure usually stops much before
reaching the leaves of the dendrogram, so one could go
for the average value 〈d〉 ∼ log n, for a total complexity
of O(n2 log n). The algorithm is faster than extremal op-
timization and it is also slightly more accurate, especially
for large graphs. The modularity matrix and the corre-
sponding spectral optimization can be trivially extended
to weighted graphs.

A different spectral approach had been previously pro-
posed by White and Smyth (White and Smyth, 2005).
Let W indicate the weighted adjancency matrix of a
graph G. A partition of G in k clusters can be described
through an n× k assignment matrix X, where xic = 1 if
vertex i belongs to cluster c, otherwise xic = 0. It can
be easily shown that, up to a multiplicative constant,
modularity can be rewritten in terms of the matrix X as

Q ∝ tr[XT (W −D)X] = −tr[XTLQX], (29)

where W is a diagonal matrix with identical elements,
equal to the sum of all edge weights, and the entries of
D are Dij = kikj , with ki degree of vertex i. The matrix
LQ = D −W is called the Q-Laplacian. Finding the as-
signment matrix X that maximizes Q is an NP -complete
problem, but one can get a good approximation by re-
laxing the constraint that the elements of X have to be
discrete. By doing so Q becomes a sort of continuous
functional of X and one can determine the extremes of
Q by setting its first derivative (with respect to X) to
zero. This leads to the eigenvalue problem

LQX = XΛ. (30)

Here Λ is a diagonal matrix. A nice feature of the Q-
Laplacian is that, for graphs which are not too small,
it can be approximated by the transition matrix W̃, ob-
tained by normalizing W such that the sum of the ele-
ments of each row equals one. Eq. 30 is at the basis of the
algorithms developed by White and Smyth, which search
for partitions with at most K clusters, where K is a pre-
defined input parameter that may be suggested by pre-
liminary information on the graph cluster structure. The
first K−1 eigenvectors of the transition matrix W̃ can be
computed with a variant of the Lanczos method (Demmel
et al., 2000). Since the eigenvector components are not
integer, the eigenvectors do not correspond directly to a
partition of the graph in clusters. However, the compo-
nents of the eigenvectors can be used as coordinates of the
graph vertices in an Euclidean space and k-means clus-
tering is applied to obtain the desired partition. White
and Smyth proposed two methods to derive the cluster-
ing after embedding the graph in space. Both methods

have a worst-case complexity O(K2n + Km), which is
essentially linear in the number of vertices of the graph
if the latter is sparse and K � n.

5. Other optimization strategies

Agarwal and Kempe have suggested to maximize mod-
ularity within the framework of mathematical program-
ming (Agarwal and Kempe, 2008). In fact, modularity
optimization can be formulated both as a linear and as
a quadratic program. In the first case, the variables are
defined on the links: xij = 0 if i and j are in the same
cluster, otherwise xij = 1. The modularity of a partition,
up to a multiplicative constant, can then be written as

Q ∝
∑
ij

Bij(1− xij), (31)

where B is the modularity matrix defined by Newman
(see Section VI.A.4). Eq. 31 is linear in the variables
{x}, which must obey the constraint xij ≤ xik +xkj , be-
cause, if i and j are in the same cluster, and so are i and
k, then j and k must be in that cluster too. Maximiz-
ing the expression in Eq. 31 under the above constraint
is NP -hard, if the variables have to be integer as re-
quired. However, if one relaxes this condition by using
real-valued {x}, the problem can be solved in polyno-
mial time (Karloff, 1991). On the other hand, the solu-
tion does not correspond to an actual partition, as the
x variables are fractional. To get clusters out of the {x}
one needs a rounding step. The values of the x vari-
ables are used as sort of distances in a metric space (the
triangular inequality is satisfied by construction): clus-
ters of vertices “close” enough to each other (i.e. whose
mutual x variables are close to zero) are formed and re-
moved until each vertex is assigned to a cluster. The
resulting partition is further refined with the same post-
processing technique used by Newman for the spectral
optimization of modularity, i.e. by a sequence of steps
similar to those of the algorithm by Kernighan and Lin
(see Section VI.A.4). Quadratic programming can be
used to get bisections of graphs with high modularity,
that can be iterated to get a whole hierarchy of parti-
tions as in Newman’s spectral optimization. One starts
from one of the identities in Eq. 27

Q =
1

2m

∑
ij

Bij(1 + sisj), (32)

where si = ±1, depending on whether the vertex be-
longs to the first or the second cluster. Since the op-
timization of the expression 32 is NP -complete, one
must relax again the constraint on the variables s be-
ing integer. A possibility is to transform each s into an
n-dimensional vector s and each product in the scalar
product between vectors. The vectors are normalized so
that their tips lie on the unit-sphere of the n-dimensional
space. This vector problem is polynomially solvable, but

www.manaraa.com

29

one needs a method to associate a bipartition to the set
of n vectors of the solution. Any (n − 1)-dimensional
hyperplane centered at the origin cuts the space in two
halves, separating the vectors in two subsets. One can
then choose multiple random hyperplanes and pick the
one which delivers the partition with highest modular-
ity. As in the linear program, a post-processing tech-
nique á la Newman (see Section VI.A.4) is used to im-
prove the results of the procedure. The two methods
proposed by Agarwal and Kempe are strongly limited by
their high computational complexity, due mostly to the
large storage demands, making graphs with more than
104 vertices intractable. On the other hand, the idea of
applying mathematical programming to graph clustering
is promising. The code of the algorithms can be down-
loaded from http://www-scf.usc.edu/∼gaurava/. In
a recent work (G. Xu et al., 2007), Xu et al. have opti-
mized modularity using mixed-integer mathematical pro-
gramming, with both integer and continuous variables,
obtaining very good approximations of the modularity
optimum, at the price of high computational costs. Chen
et al. have used integer linear programming to transform
the initial graph into an optimal target graph consist-
ing of disjoint cliques, which effectively yields a parti-
tion (Chen et al., 2008). Berry et al. have formulated
the problem of graph clustering as a facility location prob-
lem (Hillier and Lieberman, 2004), consisting in the min-
imization of a cost function based on a local variation of
modularity (Berry et al., 2007).

Lehmann and Hansen (Lehmann and Hansen, 2007)
optimized modularity via mean field annealing (Peterson
and Anderson, 1987), a deterministic alternative to sim-
ulated annealing (Kirkpatrick et al., 1983). The method
uses Gibbs probabilities to compute the conditional mean
value for the variable of a vertex, which indicates its
community membership. By making a mean field ap-
proximation on the variables of the other vertices in the
Gibbs probabilities one derives a self-consistent set of
non-linear equations, that can be solved by iteration in
a time O(m + n)n. The method yields better modular-
ity maxima than the spectral optimization by Newman
(Section VI.A.4), at least on artificial graphs with built-
in community structure, similar to the benchmark graphs
by Girvan and Newman (Section XIV.A).

Genetic algorithms (Holland, 1992) have also been
used to optimize modularity. In a standard genetic algo-
rithm one has a set of candidate solutions to a problem,
which are numerically encoded as chromosomes, and an
objective function to be optimized on the space of solu-
tions. The objective function plays the role of biological
fitness for the chromosomes. One usually starts from
a random set of candidate solutions, which are progres-
sively changed through manipulations inspired by bio-
logical processes regarding real chromosomes, like point
mutation (random variations of some parts of the chro-
mosome) and crossing over (generating new chromosomes
by merging parts of existing chromosomes). Then, the fit-
ness of the new pool of candidates is computed and the

chromosomes with the highest fitness have the greatest
chances to survive in the next generation. After sev-
eral iterations only solutions with large fitness survive.
In a work by Tasgin et al. (Tasgin et al., 2007), parti-
tions are the chromosomes and modularity is the fitness
function. With a suitable choice of the algorithm param-
eters, like the number of chromosomes and the rates of
mutation and crossing over, Tasgin et al. could obtain
results of comparative quality as greedy modularity op-
timization on Zachary’s karate club (Zachary, 1977), the
college football network (Girvan and Newman, 2002) and
the benchmark by Girvan and Newman (Section XIV.A).

In Section III.C.2 we have seen that the modularity
maximum is obtained for the partition that minimizes
the difference between the cut size and the expected cut
size of the partition (Eq. 16). In the complete weighted
graph Gw such that the weight wij of an edge is 1 −
kikj/2m, if i and j are connected in G, and −kikj/2m if
they are not, the difference |CutP | − ExCutP is simply
the cut size of partition P. So, maximizing modularity
for G is equivalent to the problem of finding the partition
with minimal cut size of the weighted graph Gw, i.e. to
a graph partitioning problem. The problem can then
be efficiently solved by using existing software for graph
partitioning (Djidjev, 2006).

B. Modifications of modularity

In the most recent literature on graph clustering sev-
eral modifications and extensions of modularity can be
found. They are usually motivated by specific classes of
clustering problems and/or graphs that one may want to
analyze.

Modularity can be easily extended to graphs with
weighted edges (Newman, 2004). One needs to replace
the degrees ki and kj in Eq. 13 with the strengths si
and sj of vertices i and j. We remind that the strength
of a vertex is the sum of the weights of edges adjacent
to the vertex (Section A.1). For a proper normalization,
the number of edges m in Eq. 13 has to be replaced by
the sum W of the weights of all edges. The product
sisj/2W is now the expected weight of the edge ij in
the null model of modularity, which has to be compared
with the actual weight Wij of that edge in the original
graph. This can be understood if we consider the case in
which all weights are multiples of a unit weight, so they
can be rewritten as integers. The weight of the connec-
tion between two nodes can then be replaced by as many
edges between the nodes as expressed by the number of
weight units. For the resulting multigraph we can use
the same procedure as in the case of unweighted graphs,
which leads to the formally identical expression

Qw =
1

2W

∑
ij

(
Wij −

sisj
2W

)
δ(Ci, Cj), (33)

www.manaraa.com

30

which can be also written as a sum over the modules

Q =
nc∑
c=1

[Wc

W
−
(
Sc

2W

)2]
, (34)

where Wc is the sum of the weights of the internal edges
of module c and Sc is the sum of the strengths of the
vertices of c. If edge weights are not mutually commen-
surable, one can always represent them as integers with
good approximation, provided a sufficiently small weight
unit is adopted, so the expressions for weighted modu-
larity of Eqs. 33,34 are generally valid.

Modularity has also a straightforward extension to the
case of directed graphs (Arenas et al., 2007; Leicht and
Newman, 2008). If an edge is directed, the probability
that it will be oriented in either of the two possible direc-
tions depends on the in- and out-degrees of the endver-
tices. For instance, taken two vertices A and B, where
A (B) has a high (low) indegree and low (high) outde-
gree, in the null model of modularity an edge will be
much more likely to point from B to A than from A to
B. Therefore, the expression of modularity for directed
graphs reads

Qd =
1
m

∑
ij

(
Aij −

kouti kinj
m

)
δ(Ci, Cj), (35)

where the factor 2 in the denominator of the second sum-
mand has been dropped because the sum of the indegrees
(outdegrees) equals m, whereas the sum of the degrees of
the vertices of an undirected graph equals 2m; the factor
2 in the denominator of the prefactor has been dropped
because the number of non-vanishing elements of the ad-
jacency matrix is m, not 2m as in the symmetric case
of an undirected graph. If a graph is both directed and
weighted, formulas 33 and 35 can be combined as

Qgen =
1
W

∑
ij

(
Wij −

souti sinj
W

)
δ(Ci, Cj), (36)

which is the most general (available) expression of mod-
ularity (Arenas et al., 2007). Kim et al. (Kim et al.,
2009) have remarked that the directed modularity of
Eq. 35 may not properly account for the directedness
of the edges (Fig. 14), and proposed a different defini-
tion based on diffusion on directed graphs, inspired by
Google’s PageRank algorithm (Brin and Page, 1998).

If vertices may belong to more clusters, it is not obvious
how to find a proper generalization of modularity. In fact,
there is no unique recipe. Shen et al. (Shen et al., 2009),
for instance, suggested the simple definition

Q =
1

2m

∑
ij

1
OiOj

(
Aij −

kikj
2m

)
δ(Ci, Cj). (37)

Here Oi is the number of communities including vertex i.
The contribution of each edge to modularity is then the
smaller, the larger the number of communities including

BA

B'A'

FIG. 14 Problem of the directed modularity introduced by
Arenas et al. (Arenas et al., 2007). The two situations illus-
trated are equivalent for modularity, as vertices A and A′, as
well as B and B′, have identical indegrees and outdegrees.
In this way, the optimization of directed modularity is not
able to distinguish a situation in which there is directed flow
(top) or not (bottom). Reprinted figure with permission from
(Kim et al., 2009).

its endvertices. Nicosia et al. (Nicosia et al., 2009) have
made some more general considerations on the problem of
extending modularity to the case of overlapping commu-
nities. They considered the case of directed unweighted
networks, starting from the following general expression

Qov =
1
m

nc∑
c=1

∑
i,j

[
rijcAij − sijc

kouti kinj
m

]
, (38)

where kini and koutj are the indegree and outdegree of ver-
tices i and j, the index c labels the communities and rijc,
sijc express the contributions to the sum corresponding
to the edge ij in the network and in the null model, due
to the multiple memberships of i and j. If there is no
overlap between the communities, rijc = sijc = δcicjc,
where ci and cj correspond to the communities of i and
j. In this case, the edge ij contributes to the sum only
if ci = cj , as in the original definition of modularity. For
overlapping communities, the coefficients rijc, sijc must
depend on the membership coefficients αi,c, αj,c of ver-
tices i and j. One can assume that rijc = F(αi,c, αj,c),
where F is some function. The term sijc is related to
the null model of modularity, and it must be handled
with care. In modularity’s original null model edges are
formed by joining two random stubs, so one needs to
define the membership of a random stub in the various
communities. If we assume that there is no correlation
a priori between the membership coefficients of any two
vertices we can assign to a stub originating from a vertex
i in community c the average membership corresponding
to all edges which can be formed with i. On a directed

www.manaraa.com

31

graph we have to distinguish between outgoing and in-
coming stubs, so one has

βouti→,c =

∑
j F(αi,c, αj,c)

n
, (39)

βini←,c =

∑
j F(αj,c, αi,c)

n
, (40)

and one can write the following general expression for
modularity

Qov =
1
m

nc∑
c=1

∑
i,j

[
rijcAij −

βouti→,ck
out
i βinj←,ck

in
j

m

]
. (41)

The question now concerns the choice of the function
F(αi,c, αj,c). If the formula of Eq. 41 is to be an exten-
sion of modularity to the case of overlapping communi-
ties, it has to satisfy some general properties of classical
modularity. For instance, the modularity value of a cover
consisting of a single cluster the whole network should be
zero. It turns out that a large class of functions yield an
expression for modularity that fulfills this requirement.
Otherwise, the choice of F is rather arbitrary and good
choices can be only tested a posteriori, based on the re-
sults of the optimization.

Gaertler et al. have introduced quality measures based
on modularity’s principle of the comparison between a
variable relative to the original graph and the correspond-
ing variable of a null model (Gaertler et al., 2007). They
remark that modularity is just the difference between
the coverage of a partition and the expected coverage
of the partition in the null model. We remind that the
coverage of a partition is the ratio between the number
of edges within clusters and the total number of edges
(Section III.C.2). Based on this observation, Gaertler et
al. suggest that the comparison between the two terms
can be done with other binary operations as well. For
instance, one could consider the ratio

S÷cov =
∑nc

c=1 lc/m∑nc

c=1(dc/2m)2
, (42)

where the notation is the same as in Eq. 14. This can
be done as well for any variable other than coverage.
By using performance, for instance, (Section III.C.2) one
obtains two new quality functions S−perf and S÷perf , cor-
responding to taking the difference or the ratio between
performance and its null model expectation value, respec-
tively. Gaertler et al. compared the results obtained with
the four functions S−cov = Q, S÷cov, S

−
perf and S÷perf , on a

class of benchmark graphs with built-in cluster structure
(Section XIV.A) and social networks. They found that
the “absolute” variants S−cov and S−perf are better than
the “relative” variants S÷cov and S÷perf on the artificial
benchmarks, whereas S÷perf is better on social networks7.

7 The comparison was done by computing the values of significance

Furthermore S−perf is better than the standard modular-
ity S−cov.

Modifications of modularity’s null model have been in-
troduced by Massen and Doye (Massen and Doye, 2005)
and Muff et al. (Muff et al., 2005). Massen and Doye’s
null model is still a graph with the same expected degree
sequence as the original, and with edges rewired at ran-
dom among the vertices, but one imposes the additional
constraint that there can be neither multiple edges be-
tween a pair of vertices nor edges joining a vertex with
itself (loops or self-edges). This null model is more realis-
tic, as multiple edges and loops are usually absent in real
graphs. The maximization of the corresponding modified
modularity yields partitions with smaller average cluster
size than standard modularity. The latter tends to dis-
favor small communities, because the actual densities of
edges inside small communities hardly exceed the null
model densities, which are appreciably enhanced by the
contributions from multiple connections and loops. Muff
et al. proposed a local version of modularity, in which the
expected number of edges within a module is not calcu-
lated with respect to the full graph, but considering just
a portion of it, namely the subgraph including the mod-
ule and its neighbouring modules. Their motivation is
the fact that modularity’s null model implicitly assumes
that each vertex could be attached to any other, whereas
in real cases a cluster is usually connected to few other
clusters. On a directed graph, their localized modularity
LQ reads

LQ =
nc∑
c=1

[
lc
Lcn

− dinc d
out
c

L2
cn

]
. (43)

In Eq. 43 lc is the number of edges inside cluster c, dinc
(doutc) the total internal (external) degree of cluster c
and Lcn

the total number of edges in the subgraph com-
prising cluster c and its neighbor clusters. The local-
ized modularity is not bounded by 1, but can take any
value. Its maximization delivers more accurate partitions
than standard modularity optimization on a model net-
work describing the social interactions between children
in a school (school network) and on the metabolic and
protein-protein interaction networks of E. coli.

Reichardt and Bornholdt have shown that it is possible
to reformulate the problem of community detection as
the problem of finding the ground state of a spin glass
model (Reichardt and Bornholdt, 2006a). Each vertex i
is labeled by a Potts spin variable σi, which indicates the
cluster including the vertex. The basic principle of the
model is that edges should connect vertices of the same
class (i.e. same spin state), whereas vertices of different
classes (i.e. different spin states) should be disconnected
(ideally). So, one has to energetically favor edges between
vertices in the same class, as well as non-edges between

indices like coverage and performance on the final partitions.

www.manaraa.com

32

vertices in different classes, and penalize edges between
vertices of different classes, along with non-edges between
vertices in the same class. The resulting Hamiltonian of
the spin model is

H({σ}) = −
∑
i<j

Jijδ(σi, σj)

= −
∑
i<j

J(Aij − γpij)δ(σi, σj), (44)

where J is a constant expressing the coupling strength,
Aij are the elements of the adjacency matrix of the
graph, γ > 0 a parameter expressing the relative con-
tribution to the energy from existing and missing edges,
and pij is the expected number of links connecting i and
j for a null model graph with the same total number of
edges m of the graph considered. The system is a spin
glass (Mezard et al., 1987), as the couplings Jij between
spins are both ferromagnetic (on the edges of the graph,
provided γpij < 1) and antiferromagnetic (between dis-
connected vertices, as Aij = 0 and Jij = −Jγpij < 0).
The multiplicative costant J is irrelevant for practical
purposes, so in the following we set J = 1. The range of
the spin-spin interaction is infinite, as there is a non-zero
coupling between any pair of spins. Eq. 44 bears a strong
resemblance with the expression of modularity of Eq. 13.
In fact, if γ = 1 and pij = kikj/2m we recover exactly
modularity, up to a factor −1/m. In this case, finding the
spin configuration for which the Hamiltonian is minimal
is equivalent to maximizing modularity. Eq. 44 is much
more general than modularity, though, as both the null
model and the parameter γ can be arbitrarily chosen. In
particular, the value of γ determines the importance of
the null model term pij in the quality function. Eq. 44
can be rewritten as

H({σ}) = −
∑
s

[
ls − γ(ls)pij

]
= −

∑
s=1

css

=
∑
s<r

[
lrs − γ(lrs)pij

]
=
∑
s<r

ars. (45)

Here, the sums run over the clusters: ls and lrs indi-
cate the number of edges within cluster s and between
clusters r and s, respectively; (ls)pij and (lrs)pij are the
corresponding null model expectation values. Eq. 45 de-
fines the coefficients css of cohesion and ars of adhesion.
If a subset of a cluster s has a larger coefficient of adhe-
sion with another cluster r than with its complement in
s, the energy can be reduced by merging the subset with
cluster r. In the particular case in which the coefficient
of adhesion of a subset G′ of a cluster s with its com-
plement in the cluster exactly matches the coefficient of
adhesion of G′ with another cluster r, the partitions in
which G′ stays within s or is merged with r have the same
energy. In this case one can say that clusters r and s are
overlapping. In general, the partition with minimum en-
ergy has the following properties: 1) every subset of each
cluster has a coefficient of adhesion with its complement
in the cluster not smaller than with any other cluster;

2) every cluster has non-negative coefficient of cohesion;
3) the coefficient of adhesion between any two clusters is
non-positive.

By tuning the parameter γ one can vary the number
of clusters in the partition with minimum energy, going
from a single cluster comprising all vertices (γ = 0), to n
clusters with a single vertex (γ →∞). So, γ is a resolu-
tion parameter that allows to explore the cluster struc-
ture of a graph at different scales (see Section VI.C). The
authors used single spin heatbath simulated annealing al-
gorithms to find the ground state of the Hamiltonian of
Eq. 44.

Another generalization of modularity was recently sug-
gested by Arenas et al. (Arenas et al., 2008a). They re-
marked that the fundamental unit to define modularity is
the edge, but that high edge densities inside clusters usu-
ally imply the existence of long-range topological correla-
tions between vertices, which are revealed by the presence
of motifs (Milo et al., 2002), i.e. connected undirected
subgraphs, like cycles (Section A.1). For instance, a high
edge density inside a cluster usually means that there
are also several triangles in the cluster, and compara-
tively few between clusters, a criterion that has inspired
on its own popular graph clustering algorithms (Palla
et al., 2005; Radicchi et al., 2004). Modularity can then
be simply generalized by comparing the density of motifs
inside clusters with the expected density in modularity’s
null model (motif modularity). As a particular case, the
triangle modularity of a partition C reads

Q4(C) =

∑
ijk

Aij(C)Ajk(C)Aki(C)∑
ijk

AijAjkAki
−

∑
ijk

nij(C)njk(C)nki(C)∑
ijk

nijnjknki

(46)
where Aij(C) = Aijδ(Ci, Cj) (Ci is the label of the clus-
ter i belongs to), nij = kikj (ki is the degree of vertex
i) and nij(C) = nijδ(Ci, Cj). If one chooses as motifs
paths with even length, and removes the constraint that
all vertices of the motif/path should stay inside the same
cluster, maximizing motif modularity could reveal the ex-
istence of multipartite structure. For example, if a graph
is bipartite, one expects to see many 2-paths starting
from one vertex class and returning to it from the other
class. Motif modularity can be trivially extended to the
case of weighted graphs.

Several graphs representing real systems are built out
of correlation data between elements. Correlation ma-
trices are very common in the study of complex systems:
well-known examples are the correlations of price returns,
which are intensively studied by economists and econo-
physicists (Mantegna and Stanley, 2000). Correlations
may be positive as well as negative, so the corresponding
weighted edges indicate both attraction and repulsion be-
tween pairs of vertices. Usually the correlation values are
filtered or otherwise transformed such to eliminate the
weakest correlations and anticorrelations and to maintain
strictly positive weights for the edges, yielding graphs

www.manaraa.com

33

that can be treated with standard techniques. However,
ignoring negative correlations means to give up useful
information on the relationships between vertices. Find-
ing clusters in a graph with both positive and negative
weights is called correlation clustering problem (Bansal
et al., 2004). According to intuition, one expects that
vertices of the same cluster are linked by positive edges,
whereas vertices of different clusters are linked by nega-
tive edges. The best cluster structure is the partition that
maximizes the sum of the strengths (in absolute value) of
positive edges within clusters and negative edges between
clusters, or, equivalently, the partition that minimizes the
sum of the strengths (in absolute value) of positive edges
between clusters and negative edges within clusters. This
can be formulated by means of modularity, if one ac-
counts for the contribution of the negative edges. A nat-
ural way to proceed is to create two copies of the graph
at study: in one copy only the weights of the positive
edges are kept, in the other only the weights of the nega-
tive edges (in absolute value). By applying Eq. 33 to the
same partition of both graphs, one derives the contribu-
tions Q+ and Q− to the modularity of that partition for
the original graph. Gómez et al. define the global mod-
ularity as a linear combination of Q+ and Q−, that ac-
counts for the relative total strengths of positive and neg-
ative edge weights (Gómez et al., 2008). Kaplan and For-
rest (Kaplan and Forrest, 2008) have proposed a similar
expression, with two important differences. First, they
have used the total strength of the graph, i.e. the sum of
the absolute values of all weights, to normalize Q+ and
Q−; Gómez et al. instead have used the positive and the
negative strengths, for Q+ and Q−, respectively, which
seems to be the more natural choice looking at Eq. 33.
Second, Kaplan and Forrest have given equal weight to
the contributions of Q+ and Q− to their final expression
of modularity, which is just the difference Q+ − Q−. In
another work, Traag and Bruggeman (Traag and Brugge-
man, 2008) have introduced negative links in the general
spin glass formulation of modularity of Reichardt and
Bornholdt (Reichardt and Bornholdt, 2006a). Here the
relative importance of the contribution of positive and
negative edge weights is a free parameter, the tuning of
which allows to detect communities of various sizes and
densities of positive/negative edges.

Some authors have pointed out that the original ex-
pression of modularity is not ideal to detect communi-
ties in bipartite graphs, which describe several real sys-
tems, like food webs (Williams and Martinez, 2000), sci-
entific (Newman, 2001) and artistic (Gleiser and Danon,
2003) collaboration networks, etc.. Expressions of mod-
ularity for bipartite graphs were suggested by Guimerà
et al. (Guimerà et al., 2007) and Barber (Barber, 2007;
Barber et al., 2008). Guimerà et al. call the two classes
of vertices actors and teams, and indicate with ti the de-
gree of actor i and ma the degree of team a. The null
model graphs are random graphs with the same expected
degrees for the vertices, as usual. The bipartite modu-
larity MB(P) for a partition P (of the actors) has the

following expression

MB(P) =
nc∑
c=1

[∑
i 6=j∈c cij∑

ama(ma − 1)
−
∑
i 6=j∈c titj

(
∑
ama)2

]
. (47)

Here, cij is the number of teams in which actors i and
j are together and the sum

∑
ama(ma − 1) gives the

number of ordered pairs of actors in the same team. The
second ratio of each summand is the null model term,
indicating the expected (normalized) number of teams
for pairs of actors in cluster c. The bipartite modularity
can also be applied to (unipartite) directed graphs: each
vertex can be duplicated and assigned to both classes,
based on its twofold role of source and target for the
edges.

Another interesting alternative was introduced by Bar-
ber (Barber, 2007; Barber et al., 2008) and is a simple
extension of Eq. 13. Let us suppose that the two vertex
classes (red and blue) are made out of p and q vertices, re-
spectively. The degree of a red vertex i is indicated with
ki, that of a blue vertex j with dj . The adjacency ma-
trix A of the graph is in block off-diagonal form, as there
are edges only between red and blue vertices. Because
of that, Barber assumes that the null model matrix P,
whose element Pij indicates as usual the expected num-
ber of edges between vertices i and j in the null model,
also has the block off-diagonal form

P =
[
Op×p P̃p×q
P̃T
q×p Oq×q

]
, (48)

where the O are square matrices with all zero elements
and P̃ij = kidj/m, as in the null model of standard mod-
ularity (though other choices are possible). The modular-
ity maximum can be computed through the modularity
matrix B = A − P, as we have seen in Section VI.A.4.
However, spectral optimization of modularity gives excel-
lent results for bipartitions, while its performance wors-
ens when the number of clusters is unknown, as it is
usually the case. Barber has proposed a different opti-
mization technique, called Bipartite Recursively Induced
Modules (BRIM), based on the bipartite nature of the
graph. The algorithm is based on the special expression
of modularity for the bipartite case, for which once the
partition of the red or the blue vertices is known, it is
easy to get the partition of the other vertex class that
yields the maximum modularity. Therefore, one starts
from an arbitrary partition in c clusters of, say, the blue
vertices, and recovers the partition of the red vertices,
which is in turn used as input to get a better partition of
the blue vertices, and so on until modularity converges.
BRIM does not predict the number of clusters c of the
graph, but one can obtain good estimates for it by ex-
ploring different values with a simple bisection approach.
Typically, for a given c the algorithm needs a few steps
to converge, each step having a complexity O(m). An
expression of the number of convergence steps in terms
of n and/or m still needs to be derived.

www.manaraa.com

34

C. Limits of modularity

In this Section we shall discuss some features of mod-
ularity, which are crucial to identify the domain of its
applicability and ultimately to assess the issue of the re-
liability of the measure for the problem of graph cluster-
ing.

An important question concerns the value of the max-
imum modularity Qmax for a graph. We know that it
must be non-negative, as there is always at least a par-
tition with zero modularity, consisting in a single clus-
ter with all vertices (Section III.C.2). However, a large
value for the modularity maximum does not necessarily
mean that a graph has community structure. Random
graphs are supposed to have no community structure,
as the linking probability between vertices is either con-
stant or a function of the vertex degrees, so there is no
bias a priori towards special groups of vertices. Still, ran-
dom graphs may have partitions with large modularity
values (Guimerà et al., 2004; Reichardt and Bornholdt,
2006a). This is due to fluctuations in the distribution of
edges in the graph, which in many graph realizations is
not homogeneous even if the linking probability is con-
stant, like in Erdös-Rényi graphs. The fluctuations de-
termine concentrations of links in some subsets of the
graph, which then appear like communities. According
to the definition of modularity, a graph has community
structure with respect to a random graph with equal size
and expected degree sequence. Therefore, the modular-
ity maximum of a graph reveals a significant community
structure only if it is appreciably larger than the modu-
larity maximum of random graphs of the same size and
expected degree sequence. The significance of the mod-
ularity maximum QMax for a graph can be estimated by
calculating the maximum modularity for many realiza-
tions of the null model, obtained from the original graph
by randomly rewiring its edges. One then computes the
average 〈Q〉NM and the standard deviation σNMQ of the
results. The statistical significance of Qmax is indicated
by the distance of Qmax from the null model average
〈Q〉NM in units of the standard deviation σNMQ , i.e. by
the z-score

z =
Qmax − 〈Q〉NM

σNMQ
. (49)

If z � 1, Qmax indicates strong community structure.
Cutoff values of 2 − 3 for the z-scores are customary.
This approach has problems, though. It can generate
both false positives and false negatives: a few graphs that
most people would consider without a significant commu-
nity structure have a large z-score; on the other hand,
some graphs that are agreed to display cluster structure
have very low values for the z-score. Besides, the dis-
tribution of the maximum modularity values of the null
model, though peaked, is not Gaussian. Therefore, one
cannot attribute to the values of the z-score the signifi-
cance corresponding to a Gaussian distribution, and one
would need instead to compute the statistical significance

for the right distribution.
Reichardt and Bornholdt have studied the issue of the

modularity values for random graphs in some depth (Re-
ichardt and Bornholdt, 2006b, 2007), using their general
spin glass formulation of the clustering problem (Sec-
tion VI.B). They considered the general case of a ran-
dom graph with arbitrary degree distribution P (k) and
without degree-degree correlations. They set γ = 1, so
that the energy of the ground state coincides with mod-
ularity (up to a constant factor). For modularity’s null
model graphs, the modularity maximum corresponds to
an equipartition of the graph, i.e. the magnetization of
the ground state of the spin glass is zero, a result con-
firmed by numerical simulations (Reichardt and Born-
holdt, 2006b, 2007). This is because the distribution of
the couplings has zero mean, and the mean is only cou-
pled to magnetization (Fu and Anderson, 1986). For a
partition of any graph with n vertices and m edges in q
clusters with equal numbers of vertices, there is a simple
linear relation between the cut size Cq of the partition
and its modularity Qq: Cq = m[(q − 1)/q − Qq]. We
remind that the cut size Cq is the total number of inter-
cluster edges of the partition (Section IV.A). In this way,
the partition with maximum modularity is also the one
with minimum cut size, and community detection be-
comes equivalent to graph partitioning. Reichardt and
Bornholdt derived analytically the ground state energy
for Ising spins (q = 2), which corresponds to the fol-
lowing expression of the expected maximum modularity
Qmax2 for a bipartition (Reichardt and Bornholdt, 2007)

Qmax2 = U0J
〈k1/2〉
〈k〉

. (50)

Here 〈kα〉 =
∫
P (k)kαdk and U0 is the ground state en-

ergy of the Sherrington-Kirkpatrick model (Sherrington
and Kirkpatrick, 1975). The most interesting feature of
Eq. 50 is the simple scaling with 〈k1/2〉/〈k〉. Numerical
calculations show that this scaling holds for both Erdös-
Rényi and scale-free graphs (Section A.3). Interestingly,
the result is valid for partitions in q clusters, where q is
left free, not only for q = 2. The number of clusters of the
partition with maximum modularity decreases if the av-
erage degree 〈k〉 increases, and tends to 5 for large values
of 〈k〉, regardless of the degree distribution and the size
of the graph. From Eq. 50 we also see that the expected
maximum modularity for a random graph increases when
〈k〉 decreases, i. e. if the graph gets sparser. So it is par-
ticularly hard to detect communities in sparse graphs by
using modularity optimization. As we shall see in Sec-
tion XIII, the sparsity of a graph is generally a serious
obstacle for graph clustering methods, no matter if one
uses modularity or not.

A more fundamental issue concerns the capability of
modularity to detect “good” partitions. If a graph has
a clear cluster structure, one expects that the maximum
modularity of the graph reveals it. The null model of
modularity assumes that any vertex i “sees” any other
vertex j, and the expected number of edges between them

www.manaraa.com

35

is pij = kikj/2m. Similarly, the expected number of
edges between two clusters A and B with total degrees
KA and KB, respectively, is PAB = KAKB/2m. The
variation of modularity determined by the merger of A
and B with respect to the partition in which they are
separate clusters is ∆QAB = lAB/m−KAKB/2m2, with
lAB number of edges connecting A to B. If lAB = 1, i.e.
there is a single edge joining A to B, we expect that of-
ten the two subgraphs will be kept separated. Instead,
if KAKB/2m < 1, ∆QAB > 0. Let us suppose for sim-
plicity that KA ∼ KB = K, i.e. that the two subgraphs
are of about the same size, measured in terms of edges.
We conclude that, if K <∼

√
2m and the two subgraphs

A and B are connected, modularity is greater if they are
in the same cluster (Fortunato and Barthélemy, 2007).
The reason is intuitive: if there are more edges than
expected between A and B, there is a strong topologi-
cal correlation between the subgraphs. If the subgraphs
are sufficiently small (in degree), the expected number
of edges for the null model can be smaller than one, so
even the weakest possible connection (a single edge) suf-
fices to keep the subgraphs together. Interestingly, this
result holds independently of the structure of the sub-
graphs. In particular it remains true if the subgraphs are
cliques, which are the subgraphs with the largest possi-
ble density of internal edges, and represent the strongest
possible communities. In Fig. 15 a graph is made out of
nc identical cliques, with l vertices each, connected by
single edges. It is intuitive to think that the clusters of
the best partition are the individual cliques: instead, if
nc is larger than about l2, modularity would be higher
for the partition in which pairs of consecutive cliques are
parts of the same cluster (indicated by the dashed lines
in the figure).

The conclusion is striking: modularity optimization
has a resolution limit that may prevent it from detecting
clusters which are comparatively small with respect to
the graph as a whole, even when they are well defined
communities like cliques. So, if the partition with maxi-
mum modularity includes clusters with total degree of the
order of

√
m or smaller, one cannot know a priori whether

the clusters are single communities or combinations of
smaller weakly interconnected communities. This resolu-
tion problem has a large impact in practical applications.
Real graphs with community structure usually contain
communities which are very diverse in size (Clauset et al.,
2004; Danon et al., 2005; Guimerà et al., 2003; Palla
et al., 2005), so many (small) communities may remain
undetected. Besides, modularity is extremely sensitive to
even individual connections. Many real graphs, in biol-
ogy and in the social sciences, are reconstructed through
experiments and surveys, so edges may occasionally be
false positives: if two small subgraphs happen to be con-
nected by a few false edges, modularity will put them in
the same cluster, inferring a relationship between entities
that in reality may have nothing to do with each other.

The resolution limit comes from the very definition of
modularity, in particular from its null model. The weak

lK

lK

lK

lK

lK

lK

lK

lK

lK

lK

FIG. 15 Resolution limit of modularity optimization. The
natural community structure of the graph, represented by the
individual cliques (circles), is not recognized by optimizing
modularity, if the cliques are smaller than a scale depend-
ing on the size of the graph. In this case, the maximum
modularity corresponds to a partition whose clusters include
two or more cliques (like the groups indicated by the dashed
contours). Reprinted figure with permission from (Fortunato
and Barthélemy, 2007). c©2007 from the National Academy
of Science of the USA.

point of the null model is the implicit assumption that
each vertex can interact with every other vertex, which
implies that each part of the graph knows about every-
thing else. This is however questionable, and certainly
wrong for large systems like, e.g., the Web graph. It
is certainly more reasonable to assume that each vertex
has a limited horizon within the graph, and interacts just
with a portion of it. However, nobody knows how to de-
fine such local territories for the graph vertices. The null
model of the localized modularity of Muff et al. (Sec-
tion VI.B) is a possibility, since it limits the horizon of
a vertex to a local neighborhood, comprising the cluster
of the vertex and the clusters linked to it by at least one
edge (neighboring clusters). However, there are many
other possible choices. In this respect, the null model
of Girvan and Newman, though unrealistic, is the sim-
plest one can think of, which partly explains its success.
Quality functions that, like modularity, are based on a
null model such that the horizon of vertices is of the or-
der of the size of the whole graph, are likely to be affected
by a resolution limit (Fortunato, 2007). The problem is
more general, though. For instance, Li et al. (Li et al.,
2008) have introduced a quality function, called modu-
larity density, which consists in the sum over the clusters

www.manaraa.com

36

of the ratio between the difference of the internal and
external degrees of the cluster and the cluster size. The
modularity density does not require a null model, and de-
livers better results than modularity optimization (e. g.
it correctly recovers the natural partition of the graph in
Fig. 15 for any number/size of the cliques). However, it
is still affected by a resolution limit. To avoid that, Li et
al. proposed a more general definition of their measure,
including a tunable parameter that allows to explore the
graph at different resolutions, in the spirit of the methods
of Section XII.

A way to go around the resolution limit problem could
be to perform further subdivisions of the clusters ob-
tained from modularity optimization, in order to elim-
inate possible artificial mergers of communities. For
instance, one could recursively optimize modularity for
each single cluster, taking the cluster as a separate en-
tity (Fortunato and Barthélemy, 2007; Ruan and Zhang,
2008). However, this is not a reliable procedure, for two
reasons: 1) the local modularities used to find partitions
within the clusters have different null models, as they de-
pend on the cluster sizes, so they are inconsistent with
each other; 2) one needs to define a criterion to decide
when one has to stop partitioning a cluster, but there is
no obvious prescription, so any choice is necessarily based
on arbitrary assumptions.

Resolution limits arise as well in the more general for-
mulation of community detection by Reichardt and Born-
holt (Kumpula et al., 2007b). Here the limit scale for the
undetectable clusters is

√
γm. We remind that γ weighs

the contribution of the null model term in the quality
function. For γ = 1 one recovers the resolution limit of
modularity. By tuning the parameter γ it is possible to
arbitrarily vary the resolution scale of the corresponding
quality function. This in principle solves the problem of
the resolution limit, as one could adjust the resolution of
the method to the actual scale of the communities to de-
tect. The problem is that usually one has no information
about the community sizes, so it is not possible to decide
a priori the proper value(s) of γ for a specific graph. In
the most recent literature on graph clustering quite a few
multiresolution methods have been introduced, address-
ing this problem in several ways. We will discuss them
in some detail in Section XII.

VII. SPECTRAL ALGORITHMS

Spectral properties of graph matrices are frequently
used to find partitions. A paradigmatic example is spec-
tral graph partitioning, which makes use of eigenvec-
tors of the Laplacian matrix (Section IV.A). In the same
spirit, Newman-Girvan modularity can be optimized by
using the eigenvectors of the modularity matrix (Sec-
tion VI.A.4). The main idea is to infer structural rela-
tionships between vertices from the similarity of the cor-
responding components of eigenvectors of special graph
matrices. Here we review the main techniques.

Early works have shown that the eigenvectors of the
transfer matrix T (Section A.2) can be used to extract
useful information on community structure. The trans-
fer matrix acts as a time propagator for the process of
random walk on a graph. Given the eigenvector cα of
the transposed transfer matrix T †, corresponding to the
eigenvalue λα, cαi is the outgoing current flowing from
vertex i, corresponding to the eigenmode α. The partic-
ipation ratio (PR)

χα =

[
n∑
i=1

(cαi)4
]−1

(51)

indicates the effective number of vertices contributing to
eigenvector cα. If χα receives contributions only from
vertices of the same cluster, i.e. eigenvector cα is “lo-
calized”, the value of χα indicates the size of that clus-
ter (Eriksen et al., 2003; Simonsen et al., 2004). The
significance of the cluster can be assessed by comparing
χα with the corresponding participation ratio for a ran-
dom graph with the same expected degree sequence as
the original graph. Eigenvectors of the adjacency matrix
may be localized as well if the graph has a clear commu-
nity structure (Slanina and Zhang, 2005).

Donetti and Muñoz have devised an elegant method
based on the eigenvectors of the Laplacian ma-
trix (Donetti and Muñoz, 2004). The idea is simple: since
the values of the eigenvector components are close for
vertices in the same community, one can use them as co-
ordinates, such that vertices turn into points in a metric
space. So, if one uses M eigenvectors, one can embed the
vertices in an M -dimensional space. Communities ap-
pear as groups of points well separated from each other,
as illustrated in Fig. 16. The separation is the more visi-
ble, the larger the number of dimensions/eigenvectors M .
The points are grouped in communities by hierarchical
clustering (see Section III), but one merges only pairs of
connected clusters. Among all partitions of the resulting
dendrogram, the one with largest modularity is chosen.
For the similarity measure between vertices, Donetti and
Muñoz used both the Euclidean distance and the angle
distance. The angle distance between two points is the
angle between the vectors going from the origin of the
M -dimensional space to either point. Tests on the bench-
mark by Girvan and Newman (Section XIV.A) show that
the best results are obtained with complete-linkage clus-
tering. The most computationally expensive part of the
algorithm is the calculation of the Laplacian eigenvectors.
Since a few eigenvectors suffice to get good partitions, one
can determine them with the Lanczos method (Lanczos,
1950), which has complexitym/(λ3−λ2), λ2 and λ3 being
the two smallest (nonzero) eigenvalues of the Laplacian.
The number M of eigenvectors that are needed to have a
clean separation of the clusters is not known a priori, but
one can compute a number M0 > 1 of them and search
for the highest modularity partition among those deliv-
ered by the method for all 1 ≤ M ≤ M0. In a related
work, Simonsen has embedded graph vertices in space by

www.manaraa.com

37

−0.1

−0.05

0

0.05

0.1

0.15
a

−0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

0.15
b

FIG. 16 Spectral algorithm by Donetti and Muñoz. Vertex
i is represented by the values of the ith components of Lapla-
cian eigenvectors. In this example, the graph has an ad-hoc
division in four communities, indicated by the colours. The
communities are better separated in two dimensions (b) than
in one (a). Reprinted figure with permission from (Donetti
and Muñoz, 2004). c©2004 by IOP Publishing and SISSA.

using as coordinates the components of the eigenvector
of the right stochastic matrix (Simonsen, 2005).

Eigenvalues and eigenvectors of the Laplacian matrix
have been used by Alves to compute the effective con-
ductances for pairs of vertices in a graph, assuming that
the latter is an electric network with edges of unit re-
sistance (Alves, 2007). The conductances enable one to
compute the transition probabilities for a random walker
moving on the graph, and from the transition proba-
bilities one builds a similarity matrix between vertex
pairs. Hierarchical clustering is applied to join vertices
in groups. The method can be trivially extended to the
case of weighted graphs. The algorithm by Alves is rather
slow, as one needs to compute the whole spectrum of the
Laplacian, which requires a time O(n3). Moreover, there
is no criterion to select which partition(s) of the dendro-
gram is (are) the best.

Capocci et al. also used eigenvector components to
identify communities (Capocci et al., 2005). In this case
the eigenvectors are those of the right stochastic matrix
R (Section A.2), that is derived from the adjacency ma-
trix by dividing each row by the sum of its elements.
The right stochastic matrix has similar properties as the
Laplacian. If the graph has g connected components,
the largest g eigenvalues are equal to 1, with eigenvec-
tors characterized by having equal-valued components for
vertices belonging to the same component. In this way,
by listing the vertices according to the connected compo-
nents they belong to, the components of any eigenvector
of R, corresponding to eigenvalue 1, display a step-wise
profile, with plateaus indicating vertices in the same con-
nected component. For connected graphs with cluster

1 2

3

4

5

6 7

8

9

10

1112

13 14

15
16

17

18
0

0 5 10 15 20
i

−0.4

−0.2

0

0.2

0.4

x i

FIG. 17 Basic principle of the spectral algorithm by Capocci
et al. (Capocci et al., 2005). The bottom diagram shows the
values of the components of the second eigenvector of the
right stochastic matrix for the graph drawn on the top. The
three plateaus of the eigenvector components correspond to
the three evident communities of the graph. Reprinted fig-
ures with permission from (Capocci et al., 2005). c©2005 by
Elsevier.

structure, one can still see plateaus, if communities are
only loosely connected to each other (Fig. 17). Here the
communities can be immediately deducted by an inspec-
tion of the components of any eigenvector with eigenvalue
1. In practical cases, plateaus are not clearly visible, and
one eigenvector is not enough. However, one expects that
there should be a strong correlation between eigenvector
components corresponding to vertices in the same clus-
ter. Capocci et al. derived a similarity matrix, where the
similarity between vertices i and j is the Pearson correla-
tion coefficient between their corresponding eigenvector
components, where the averages are taken over a small
set of eigenvectors. The eigenvectors can be calculated by
performing a constrained optimization of a suitable cost
function. The method can be extended to weighted and
directed graphs. It is useful to estimate vertex similari-
ties, however it does not provide a well-defined partition
of the graph.

www.manaraa.com

38

VIII. DYNAMIC ALGORITHMS

This Section describes methods employing processes
running on the graph, focusing on spin-spin interactions,
random walks and synchronization.

A. Spin models

The Potts model is among the most popular models in
statistical mechanics (Wu, 1982). It describes a system
of spins that can be in q different states. The interac-
tion is ferromagnetic, i.e. it favours spin alignment, so at
zero temperature all spins are in the same state. If an-
tiferromagnetic interactions are also present, the ground
state of the system may not be the one where all spins
are aligned, but a state where different spin values co-
exist, in homogeneous clusters. If Potts spin variables
are assigned to the vertices of a graph with community
structure, and the interactions are between neighbour-
ing spins, it is likely that the structural clusters could
be recovered from like-valued spin clusters of the system,
as there are many more interactions inside communities
than outside. Based on this idea, inspired by an ear-
lier paper by Blatt, Wiseman and Domany (Blatt et al.,
1996), Reichardt and Bornholdt proposed a method to
detect communities that maps the graph onto a q-Potts
model with nearest-neighbours interactions (Reichardt
and Bornholdt, 2004). The Hamiltonian of the model,
i.e. its energy, reads

H = −J
∑
i,j

Aijδ(σi, σj) + γ

q∑
s=1

ns(ns − 1)
2

, (52)

where Aij is the element of the adjacency matrix, δ is
the Kronecker’s function, ns the number of spins in state
s, J and γ are coupling parameters. The energy H is
the sum of two competing terms: the first is the classical
ferromagnetic Potts model energy, and favors spin align-
ment; the second term instead peaks when the spins are
homogeneously distributed. The ratio γ/J expresses the
relative importance of the two terms: by tuning γ/J one
can explore different levels of modularity of the system,
from the whole graph seen as a single cluster to clusters
consisting of individual vertices. If γ/J is set to the value
δ(G) of the average density of edges of the graph G, the
energy of the system is smaller if spins align within sub-
graphs such that their internal edge density exceeds δ(G),
whereas the external edge density is smaller than δ(G),
i.e. if the subgraphs are clusters (Section III.B.1). The
minimization of H is carried out via simulated annealing
((Kirkpatrick et al., 1983) and Section VI.A.2), starting
from a configuration where spins are randomly assigned
to the vertices and the number of states q is very high.
The procedure is quite fast and the results do not de-
pend on q (provided q is sufficiently high). The method
also allows to identify vertices shared between communi-
ties, from the comparison of partitions corresponding to

global and local energy minima. The Hamiltonian H can
be rewritten as

H =
∑
i<j

δ(σi, σj)(γ −Aij), (53)

which is the energy of an infinite-range Potts spin glass,
as all pairs of spins are interacting (neighboring or not)
and there may be both positive and negative couplings.
Eq. 53 is at the basis of the successive generalization of
modularity with arbitrary null models proposed by Re-
ichardt and Bornholdt, that we have discussed in Sec-
tion VI.B. The method can be simply extended to the
analysis of weighted graphs, by introducing spin cou-
plings proportional to the edge weights, which amounts
to replacing the adjacency matrix A with the weight ma-
trix W in Eq. 52.

In another work (S.-W. Son et al., 2006), Son et al.
have presented a clustering technique based on the Fer-
romagnetic Random Field Ising Model (FRFIM). Given a
weighted graph with weight matrix W, the Hamiltonian
of the FRFIM on the graph is

H = −1
2

∑
i,j

Wijσiσj −
∑
i

Biσi. (54)

In Eq. 54 σi = ±1 and Bi are the spin and the ran-
dom magnetic field of vertex i, respectively. The FRFIM
has been studied to understand the nature of the spin
glass phase transition (Middleton and Fisher, 2002) and
the disorder-driven roughening transition of interfaces in
disordered media (Noh and Rieger, 2001, 2002). The
behavior of the model depends on the choice of the mag-
netic fields. Son et al. set to zero the magnetic fields
of all vertices but two, say s and t, for which the field
has infinite strength and opposite signs. This amounts
to fix the spins of s and t to opposite values, introduc-
ing frustration in the system. The idea is that, if s and t
are central vertices of different communities, they impose
their spin state to the other community members. So,
the state of minimum energy is a configuration in which
the graph is polarized into a subgraph with all positive
spins and a subgraph with all negative spins, coinciding
with the communities, if they are well defined. Finding
the minimum of H is equivalent to solving a maximum-
flow/minimum-cut problem, which can be done through
well known techniques of combinatorial optimization, like
the augmenting path algorithm (Ahuja et al., 1993). For
a given choice of s and t, many ground states can be
found. The vertices that end up in the same cluster in
all ground states represent the cores of the clusters, which
are called coteries. Possible vertices not belonging to the
coteries indicate that the two clusters overlap. In the
absence of information about the cluster structure of the
graph, one needs to repeat the procedure for any pair
of vertices s and t. Picking vertices of the same cluster,
for instance, would not give meaningful partitions. Son
et al. distinguish relevant clusters if they are of about
the same size. The procedure can be iteratively applied

www.manaraa.com

39

to each of the detected clusters, considered as a separate
graph, until all clusters have no community structure any
more. On sparse graphs, the algorithm has complexity
O(n2+θ), where θ ∼ 1.2, so it is very slow and can be cur-
rently used for graphs of up to few thousands vertices. If
one happens to know which are the important vertices
of the clusters, e.g. by computing appropriate centrality
values (like degree or site betweenness (Freeman, 1977)),
the choices for s and t are constrained and the complexity
can become as low as O(nθ), which enables the analysis
of systems with millions of vertices. Tests on Barabási-
Albert graphs (Section A.3) show that the latter have no
community structure, as expected.

B. Random walk

Random walks (Hughes, 1995) can also be useful to
find communities. If a graph has a strong community
structure, a random walker spends a long time inside a
community due to the high density of internal edges and
consequent number of paths that could be followed. Here
we describe the most popular clustering algorithms based
on random walks. All of them can be trivially extended
to the case of weighted graphs.

Zhou used random walks to define a distance between
pairs of vertices (Zhou, 2003a): the distance dij between
i and j is the average number of edges that a random
walker has to cross to reach j starting from i. Close
vertices are likely to belong to the same community.
Zhou defines a “global attractor” of a vertex i to be a
closest vertex to i (i.e. any vertex lying at the smallest
distance from i), whereas the “local attractor” of i is its
closest neighbour. Two types of communities are defined,
according to local or global attractors: a vertex i has to
be put in the same community of its attractor and of all
other vertices for which i is an attractor. Communities
must be minimal subgraphs, i.e. they cannot include
smaller subgraphs which are communities according to
the chosen criterion. Applications to real networks, like
Zachary’s karate club (Zachary, 1977) and the college
football network compiled by Girvan and Newman (Gir-
van and Newman, 2002) (Section XIV.A), along with
artificial graphs like the benchmark by Girvan and
Newman (Girvan and Newman, 2002) (Section XIV.A),
show that the method can find meaningful partitions.
The method can be refined, in that vertex i is associated
to its attractor j only with a probability proportional to
exp(−βdij), β being a sort of inverse temperature. The
computation of the distance matrix requires solving N
linear-algebra equations, which requires a time O(n3).
On the other hand, an exact computation of the distance
matrix is not necessary, as the attractors of a vertex
can be identified by considering only a localized portion
of the graph around the vertex; therefore the method
can be applied to large graphs as well. In a successive
paper (Zhou, 2003b), Zhou introduced a measure of
dissimilarity between vertices based on the distance

defined above. The measure resembles the definition
of distance based on structural equivalence of Eq. 7,
where the elements of the adjacency matrix are replaced
by the corresponding distances. Graph partitions are
obtained with a divisive procedure that, starting from
the graph as a single community, performs successive
splits based on the criterion that vertices in the same
cluster must be less dissimilar than a running threshold,
which is decreased during the process. The hierarchy
of partitions derived by the method is representative of
actual community structures for several real and artifi-
cial graphs, including Zachary’s karate club (Zachary,
1977), the college football network (Girvan and
Newman, 2002) and the benchmark by Girvan and
Newman (Girvan and Newman, 2002) (Section XIV.A).
The time complexity of the procedure is again O(n3).
The code of the algorithm can be downloaded from
http://www.mpikg-golm.mpg.de/theory/people/zhou
/networkcommunity.html.

In another work (Zhou and Lipowsky, 2004), Zhou and
Lipowsky adopted biased random walkers, where the bias
is due to the fact that walkers move preferentially towards
vertices sharing a large number of neighbours with the
starting vertex. They defined a proximity index, which
indicates how close a pair of vertices is to all other ver-
tices. Communities are detected with a procedure called
NetWalk, which is an agglomerative hierarchical cluster-
ing method (Section IV.B), where the similarity between
vertices is expressed by their proximity. The method has
a time complexity O(n3): however, the proximity index
of a pair of vertices can be computed with good approx-
imation by considering just a small portion of the graph
around the two vertices, with a considerable gain in time.
The performance of the method is comparable with that
of the algorithm of Girvan and Newman (Section V.A).

A different distance measure between vertices based on
random walks was introduced by Latapy and Pons (Lat-
apy and Pons, 2005). The distance is calculated from
the probabilities that the random walker moves from
a vertex to another in a fixed number of steps. The
number of steps has to be large enough to explore
a significant portion of the graph, but not too long,
as otherwise one would approach the stationary limit
in which transition probabilities trivially depend on
the vertex degrees. Vertices are then grouped into
communities through an agglomerative hierarchical clus-
tering technique based on Ward’s method (Ward, 1963).
Modularity (Section III.C.2) is used to select the best
partition of the resulting dendrogram. The algorithm
runs to completion in a time O(n2d) on a sparse graph,
where d is the depth of the dendrogram. Since d is
often small for real graphs (O(log n)), the expected
complexity in practical computations is O(n2 log n).
The software of the algorithm can be found at
http://www-rp.lip6.fr/∼latapy/PP/walktrap.html.

Hu et al. (Hu et al., 2008) designed a graph clustering
technique based on a signaling process between vertices,
somewhat resembling diffusion. Initially a vertex s is as-

www.manaraa.com

40

signed one unit of signal, all the others have no signal. In
the first step, the source vertex s sends one unit of signal
to each of its neighbors. Next, all vertices send as many
units of signals they have to each of their neighbors. The
process is continued until a given number of iterations T
is reached. The intensity of the signal at vertex i, nor-
malized by the total amount of signal, is the i-th entry of
a vector us, representing the source vertex s. The proce-
dure is then repeated by choosing each vertex as source.
In this way one can associate an n-dimensional vector
to each vertex, which correspons to a point in an Eu-
clidean space. The vector us is actually the s-th column
of the matrix (I + A)T , where I and A are the unit and
adjacency matrix, respectively. The idea is that the vec-
tor us describes the influence that vertex s exerts on the
graph through signaling. Vertices of the same commu-
nity are expected to have similar influence on the graph
and thus to correspond to vectors which are “close” in
space. The vectors are finally grouped via fuzzy k-means
clustering (Section IV.C). The optimal number of clus-
ters corresponds to the partition with the shortest aver-
age distance between vectors in the same community and
the largest average distance between vectors of different
communities. The signaling process is similar to diffu-
sion, but with the important difference that here there is
no flow conservation, as the amount of signal at each ver-
tex is not distributed among its neighbors but transferred
entirely to each neighbor (as if the vertex sent multiple
copies of the same signal). The complexity of the algo-
rithm is O(T (〈k〉+1)n2), where 〈k〉 is the average degree
of the graph. Like in the previous algorithm by Latapy
and Pons (Latapy and Pons, 2005), finding an optimal
value for the number of iterations T is non-trivial.

Delvenne et al. (Delvenne et al., 2008) have shown that
random walks enable one to introduce a general quality
function, expressing the persistence of clusters in time. A
cluster is persistent with respect to a random walk after
t time steps if the probability that the walker escapes the
cluster before t steps is low. Such probability is computed
via the clustered autocovariance matrix Rt, that, for a
partition of the graph in c clusters, is defined as

Rt = HT (ΠMt − πTπ)H. (55)

Here, H is the n× c membership matrix, whose element
Hij equals one if vertex i is in cluster j, zero otherwise;
M is the transition matrix of the random walk; Π the
diagonal matrix whose elements are the stationary prob-
abilities of the random walk, i. e. Πii = ki/2m, ki being
the degree of vertex i; π is the vector whose entries are
the diagonal elements of Π. The element (Rt)ij expresses
the probability for the walk to start in cluster i and end
up in cluster j after t steps, minus the stationary proba-
bility that two independent random walkers are in i and
j. In this way, the persistence of a cluster i is related to
the diagonal element (Rt)ii. Delvenne et al. defined the

stability of the clustering

r(t; H) = min
0≤s≤t

c∑
i=1

(Rs)ii = min
0≤s≤t

trace[Rs]. (56)

The aim is then, for a given time t, finding the partition
with the largest value for r(t; H). For t = 0, the most
stable partition is that in which all vertices are their own
clusters. Interestingly, for t = 1, maximizing stability
is equivalent to maximizing Newman-Girvan modularity
(Section III.C.2) and the cut size (Section IV.A) equals
(r(0) − r(1)), so it is also a one-step measure. In the
limit t → ∞, the most stable partition coincides with
the Fiedler partition (Fiedler, 1973, 1975), i. e. the bi-
partition where vertices are put in the same class accord-
ing to the signs of the corresponding component of the
Fiedler eigenvector (Section IV.A). Therefore, the mea-
sure r(t; H) is very general, and gives a unifying inter-
pretation in the framework of the random walk of several
measures that were defined in different contexts. In par-
ticular, modularity has a natural interpretation in this
dynamic picture (Lambiotte et al., 2008). Since the size
of stable clusters increases with t, time can be considered
as a resolution parameter. Resolution can be fine tuned
by taking time as a continuous variable (the extension
of the formalism is straightforward); the linearization of
the stability measure at small (continuous) times delivers
previously introduced multiresolution versions of modu-
larity (Arenas et al., 2008b; Reichardt and Bornholdt,
2006a) (Section XII.A).

We conclude this section by describing the Markov
Cluster Algorithm (MCL), which was invented by van
Dongen (van Dongen, 2000a). This method simulates a
peculiar process of flow diffusion in a graph. One starts
from the right stochastic matrix of the graph R, which
we have defined in Section A.2. The element Rij of the
stochastic matrix gives the probability that a random
walker, sitting at vertex i, moves to j. The sum of the
elements of each column of R is one. Each iteration of the
algorithm consists of two steps. In the first step, called
expansion, the stochastic matrix of the graph is raised
to an integer power p (usually p = 2). The entry Mij

of the resulting matrix gives the probability that a ran-
dom walker, starting from vertex i, reaches j in p steps
(diffusion flow). The second step, which has no physical
counterpart, consists in raising each single entry of the
matrix M to some power α, where α is now real-valued.
This operation, called inflation, enhances the weights be-
tween pairs of vertices with large values of the diffusion
flow, which are likely to be in the same community. Next,
the elements of each column must be divided by their
sum, such that the sum of the elements of the column
equals one and a new right stochastic matrix is recov-
ered. After some iterations, the process delivers a stable
matrix, with some remarkable properties. Its elements
are either zero or one, so it is a sort of adjacency matrix.
Most importantly, the graph described by the matrix is
disconnected, and its connected components are the com-

www.manaraa.com

41

munities of the original graph. The method is really sim-
ple to implement, which is the main reason of its success:
as of now, the MCL is one of the most used clustering al-
gorithms in bioinformatics. The code can be downloaded
from http://www.micans.org/mcl/. Due to the ma-
trix multiplication of the expansion step, the algorithm
should scale as O(n3), even if the graph is sparse, as the
running matrix becomes quickly dense after a few steps
of the algorithm. However, while computing the matrix
multiplication, MCL keeps only a maximum number k of
non-zero elements per column, where k is usually much
smaller than n. So, the actual worst-case running time
of the algorithm is O(nk2) on a sparse graph. A prob-
lem of the method is the fact that the final partition is
sensitive to the parameter α used in the inflation step.
Therefore several partitions can be obtained, and it is not
clear which are the most meaningful or representative.

C. Synchronization

Synchronization (Pikovsky et al., 2001) is an emergent
phenomenon occurring in systems of interacting units
and is ubiquitous in nature, society and technology. In
a synchronized state, the units of the system are in the
same or similar state(s) at every time. Synchronization
has also been applied to find communities in graphs. If
oscillators are placed at the vertices, with initial random
phases, and have nearest-neighbour interactions, oscilla-
tors in the same community synchronize first, whereas
a full synchronization requires a longer time. So, if one
follows the time evolution of the process, states with syn-
chronized clusters of vertices can be quite stable and long-
lived, so they can be easily recognized. This was first
shown by Arenas, Dı́az-Guilera and Pérez-Vicente (Are-
nas et al., 2006). They used Kuramoto oscillators (Ku-
ramoto, 1984), which are coupled two-dimensional vec-
tors endowed with a proper frequency of oscillations. In
the Kuramoto model, the phase θi of oscillator i evolves
according to the following dynamics

dθi
dt

= ωi +
∑
j

K sin(θj − θi), (57)

where ωi is the natural frequency of i, K the strength of
the coupling between oscillators and the sum runs over
all oscillators (mean field regime). If the interaction cou-
pling exceeds a threshold, depending on the width of the
distribution of natural frequencies, the dynamics leads to
synchronization. If the dynamics runs on a graph, each
oscillator is coupled only to its nearest neighbors. In or-
der to reveal the effect of local synchronization, Arenas
et al. introduced the local order parameter

ρij(t) = 〈cos(θi(t)− θj(t))〉, (58)

measuring the average correlation between oscillators i
and j. The average is computed over different initial con-
ditions. By visualizing the correlation matrix ρ(t) at a

given time t, one may distinguish groups of vertices that
synchronize together. The groups can be identified by
means of the dynamic connectivity matrix Dt(T), which
is a binary matrix obtained from ρ(t) by thresholding its
entries. The dynamic connectivity matrix embodies in-
formation about both the synchronization dynamics and
the underlying graph topology. From the spectrum of
Dt(T) it is possible to derive the number of disconnected
components at time t. By plotting the number of compo-
nents as a function of time, plateaus may appear at some
characteristic time scales, indicating structural scales of
the graph with robust communities (Fig. 18). Partitions
corresponding to long plateaus are characterized by high
values of the modularity of Newman and Girvan (Sec-
tion III.C.2) on graphs with homogeneous degree distri-
butions, whereas such correlation is poor in the presence
of hubs (Arenas and Dı́az-Guilera, 2007). Indeed, it has
been proven that the stability (Eq. 56) of the dynamics
associated to the standard Laplacian matrix, which de-
scribes the convergence towards synchronization of the
Kuramoto model with equal intrinsic frequencies, coin-
cides with modularity only for graphs whose vertices have
the same degree (Lambiotte et al., 2008). The appear-
ance of plateaus at different time scales hints to a hier-
archical organization of the graph. After a sufficiently
long t all oscillators are synchronized and the whole sys-
tem behaves as a single component. Interestingly, Arenas
et al. found that the structural scales revealed by syn-
chronization correspond to groups of eigenvalues of the
Laplacian matrix of the graph, separated by gaps.

Based on the same principle, Boccaletti et al. de-
signed a community detection method based on synchro-
nization (Boccaletti et al., 2007). The synchronization
dynamics is a variation of Kuramoto’s model, the opin-
ion changing rate (OCR) model (Pluchino et al., 2005).
Here the interaction coupling between adjacent vertices
is weighted by a term proportional to a (negative) power
of the betweenness of the edge connecting the vertices
(Section V.A), with exponent α. The evolution equa-
tions of the model are solved by decreasing the value of
α during the evolution of the dynamics, starting from a
configuration in which the system is fully synchronized
(α = 0). The graph tends to get split into clusters of
synchronized elements, because the interaction strengths
across inter-cluster edges get suppressed due to their high
betweenness scores. By varying α, different partitions are
recovered, from the graph as a whole until the vertices
as separate communities: the partition with the largest
value of modularity is taken as the most relevant. The
algorithm scales in a time O(mn), or O(n2) on sparse
graphs, and gives good results in practical examples, in-
cluding Zachary’s karate club (Zachary, 1977) and the
benchmark by Girvan and Newman (Girvan and New-
man, 2002) (Section XIV.A). The method can be refined
by homogeneizing the natural frequencies of the oscilla-
tors during the evolution of the system. In this way, the
system becomes more stable and partitions with higher
modularity values can be recovered.

www.manaraa.com

42

100time

10

100

i

15-2

0.1 1
1/λ

i

10

100
i

15-2

100time

10

100

i

13-4

0.1 1
1/λ

i

10

100

i

13-4

FIG. 18 Synchronization of Kuramoto oscillators on graphs with two hierarchical levels of communities. (Top) The number
of different synchronized components is plotted versus time for two graphs with different densities of edges within the clusters.
(Bottom) The rank index of the eivenvalues of the Laplacian matrices of the same two graphs of the upper panels is plotted
versus the inverse eigenvalues. (the ranking goes from the highest to the smallest eigenvalue). The two types of communities
are revealed by the plateaus. Reprinted figure with permission from (Arenas et al., 2006). c©2006 by the American Physical
Society.

Synchronization-based algorithms may not be reliable
when communities are very different in size; tests in this
direction are still missing.

IX. METHODS BASED ON STATISTICAL INFERENCE

Statistical inference (Mackay, 2003) aims at deducing
properties of data sets, starting from a set of observa-
tions and model hypotheses. If the data set is a graph,
the model, based on hypotheses on how vertices are con-
nected to each other, has to fit the actual graph topol-
ogy. In this section we review those clustering tech-
niques attempting to find the best fit of a model to the
graph, where the model assumes that vertices have some

sort of classification, based on their connectivity pat-
terns. We mainly focus on methods adopting Bayesian
inference (Winkler, 2003), in which the best fit is ob-
tained through the maximization of a likelihood (gen-
erative models), but we also discuss related techniques,
based on blockmodeling (Doreian et al., 2005), model se-
lection (Burnham and Anderson, 2002) and information
theory (Mackay, 2003).

A. Generative models

Bayesian inference uses observations to estimate the
probability that a given hypothesis is true. It con-
sists of two ingredients: the evidence, expressed by

www.manaraa.com

43

the information D one has about the system (e.g.,
through measurements); a statistical model with param-
eters {θ}. Bayesian inference starts by writing the like-
lihood P (D|{θ}) that the observed evidence is produced
by the model for a given set of parameters {θ}. The aim
is to determine the choice of {θ} that maximizes the pos-
terior distribution P ({θ}|D) of the parameters given the
model and the evidence. By using Bayes’ theorem one
has

P ({θ}|D) =
1
Z
P (D|{θ})P ({θ}), (59)

where P ({θ}) is the prior distribution of the model pa-
rameters and

Z =
∫
P (D|{θ})P ({θ})dθ. (60)

Unfortunately, computing the integral 60 is a major chal-
lenge. Moreover, the choice of the prior distribution
P ({θ}) is non-obvious. Generative models differ from
each other by the choice of the model and the way they
address these two issues.

Bayesian inference is frequently used in the analysis
and modeling of real graphs, including social (Handcock
et al., 2007; Koskinen and Snijders, 2007; Rhodes and
Keefe, 2007) and biological networks (Berg and Lässig,
2006; Rowicka and Kudlicki, 2004). Graph clustering can
be considered a specific example of inference problem.
Here, the evidence is represented by the graph structure
(adjacency or weight matrix) and there is an additional
ingredient, represented by the classification of the ver-
tices in groups, which is a hidden (or missing) informa-
tion that one wishes to infer along with the parameters
of the model which is supposed to be responsible for the
classification. This idea is at the basis of several recent
papers, which we discuss here. In all these works, one
essentially maximizes the likelihood P (D|{θ}) that the
model is consistent with the observed graph structure,
with different constraints. We specify the set of param-
eters {θ} as the triplet ({q}, {π}, k), where {q} indicates
the community assignment of the vertices, {π} the model
parameters, and k the number of clusters. In the follow-
ing we shall stick to the notation of the papers, so the
variables above may be indicated by different symbols.
However, to better show what each method specifically
does we shall refer to our general notation at the end of
the section.

Hastings (Hastings, 2006) chooses as a model of net-
work with communities the planted partition model (Sec-
tion XIV). In it, n vertices are assigned to q groups: ver-
tices of the same group are linked with a probability pin,
while vertices of different groups are linked with a prob-
ability pout. If pin > pout, the model graph has a built-in
community structure. The vertex classification is indi-
cated by the set of labels {qi}. The probability that,
given a graph, the classification {qi} is the right one ac-

cording to the model is8

p({qi}) ∝ {exp[−
∑
〈ij〉

Jδqiqj −
∑
i 6=j

J ′δqiqj/2]}−1, (61)

where J = log{[pin(1 − pout)]/[pout(1 − pin)]}, J ′ =
log[(1−pin)/(1−pout)] and the first sum runs over nearest
neighboring vertices. Maximizing p({qi}) is equivalent
to minimizing the argument of the exponential, which is
the Hamiltonian of a Potts model with short- and long-
range interactions. For pin > pout, J > 0 and J ′ < 0,
so the model is a spin glass with ferromagnetic nearest-
neighbor interactions and antiferromagnetic long-range
interactions, similar to the model proposed by Reichardt
and Bornholdt to generalize Newman-Girvan modular-
ity (Reichardt and Bornholdt, 2006a) (Section VI.B).
Hastings used belief propagation (Gallager, 1963) to
find the ground state of the spin model. On sparse
graphs, the complexity of the algorithm is expected to
be O(n logα n), where α needs to be estimated numeri-
cally. In principle one needs to input the parameters pin
and pout, which are usually unknown in practical appli-
cations. However, it turns out that they can be chosen
rather arbitrarily, and that bad choices can be recognized
and corrected.

Newman and Leicht (Newman and Leicht, 2007)
have recently proposed a similar method based on a
mixture model and the expectation-maximization tech-
nique (Dempster et al., 1977). The method bears some
resemblance with an a posteriori blockmodel previously
introduced by Snijders and Nowicki (Nowicki and Sni-
jders, 2001; Snijders and Nowicki, 1997). They start from
a directed graph with n vertices, whose vertices fall into
c classes. The group of vertex i is indicated by gi, πr the
fraction of vertices in group r, and θri the probability
that there is a directed edge from vertices of group r to
vertex i. By definition, the sets {πi} and {θri} satisfy the
normalization conditions

∑c
r=1 πi = 1 and

∑n
i=1 θri = 1.

Apart from normalization, the probabilities {θri} are as-
sumed to be independent of each other. The best classifi-
cation of the vertices corresponds to the maximum of the
average log-likelihood L̄ that the model, described by the
values of the parameters {πi} and {θri} fits the adjacency
matrix A of the graph. The expression of the average
log-likelihood L̄ requires the definition of the probability
qir = Pr(gi = r|A, π, θ), that vertex i belongs to group g.
By applying Bayes’ theorem the probabilities {qir} can
be computed in terms of the {πi} and the {θri}, as

qir =
πr
∏
j θ

Aij

rj∑
s πs

∏
j θ

Aij

sj

, (62)

while the maximization of the average log-likelihood L̄,

8 The actual likelihood includes an additional factor expressing the
a priori probability of the community sizes. Hastings assumes
that this probability is constant.

www.manaraa.com

44

under the normalization constraints of the model vari-
ables {πi} and {θri}, yields the relations

πr =
1
n

∑
i

qir, θrj =
∑
iAijqir∑
i kiqir

, (63)

where ki is the outdegree of vertex i. Equations 62 and 63
are self-consistent, and can be solved by iterating them
to convergence, starting from a suitable set of initial con-
ditions. Convergence is fast, so the algorithm could be
applied to fairly large graphs, with up to about 106 ver-
tices.

The method, designed for directed graphs, can be eas-
ily extended to the undirected case, whereas an exten-
sion to weighted graphs is not straightforwad. A nice
feature of the method is that it does not require any
preliminary indication on what type of structure to look
for; the resulting structure is the most likely classifica-
tion based on the connectivity patterns of the vertices.
Therefore, various types of structures can be detected,
not necessarily communities. For instance, multipartite
structure could be uncovered, or mixed patterns where
multipartite subgraphs coexist with communities, etc..
In this respect, it is more powerful than most methods
of community detection, which are bound to focus only
on proper communities, i.e. subgraphs with more inter-
nal than external edges. In addition, since partitions are
defined by assigning probability values to the vertices,
expressing the extent of their membership in a group, it
is possible that some vertices are not clearly assigned to
a group, but to more groups, so the method is able to
deal with overlapping communities. The main drawback
of the algorithm is the fact that one needs to specify the
number of groups c at the beginning of the calculation,
a number that is typically unknown for real networks. It
is possible to derive this information self-consistently by
maximizing the probability that the data are reproduced
by partitions with a given number of clusters. But this
procedure involves some degree of approximation, and
the results are often not good.

In a recent study it has been shown that the method
by Newman and Leicht enables one to rank vertices
based on their degree of influence on other vertices,
which allows to identify the vertices responsible for the
group structure and its stability (Mungan and Ramasco,
2008). A very similar technique has also been applied
by Vázquez (Vazquez, 2008) to the problem of popula-
tion stratification, where animal populations and their
attributes are represented as hypergraphs (Section A.1).
Vázquez also suggested an interesting criterion to decide
the optimal number of clusters, namely picking the num-
ber c̄ whose solution has the greatest similarity with so-
lutions obtained at different values of c. The similarity
between two partitions can be estimated in various ways,
for instance by computing the normalized mutual infor-
mation (Section XIV). In a successive paper (Vazquez,
2008), Vázquez showed that better results are obtained
if the classification likelihood is maximized by using Vari-
ational Bayes (Beal, 2003; Jordan et al., 1999).

a) c)

b)

FIG. 19 Problem of method by Newman and Leicht. By ap-
plying the method to the illustrated complete bipartite graph
(colors indicate the vertex classes) the natural group structure
c) is not recovered; instead, the most likely classifications are
a) and b). Reprinted figure with permission from (Ramasco
and Mungan, 2008). c©2008 by the American Physical Society.

Ramasco and Mungan (Ramasco and Mungan, 2008)
remarked that the normalization condition on the prob-
abilities {θri} implies that each group r must have non-
zero outdegree and that therefore the method fails to
detect the intuitive group structure of (directed) bi-
partite graphs (Fig. 19). To avoid this problem, they
proposed a modification, that consists in introducing
three sets for the edge probabilities {θri}, relative to
edges going from group r to vertex i (as before), from
i to r and in both directions, respectively. Further-
more, they used the average entropy of the classification
Sq = −(

∑
i,r qir ln qir)/n, where the qir are the analogs

of the probabilities in Eq. 62, to infer the optimal num-
ber of groups, that the method of Newman and Leicht is
unable to provide. Another technique similar to that by
Newman and Leicht has been designed by Ren et al. (Ren
et al., 2007). The model is based on the group fractions
{πi}, defined as above, and a set of probabilities {βr,i},
expressing the relevance of vertex i for group r; the basic
assumption is that the probability that two vertices of
the same group are connected by an edge is proportional
to the product of the relevances of the two vertices. In
this way, there is an explicit relation between group mem-
bership and edge density, and the method can only de-
tect community structure. The community assignments
are recovered through an expectation-maximization pro-
cedure that closely follows that by Newman and Leicht.

Maximum likelihood estimation has been used by
Čopič et al. to define an axiomatization of the prob-
lem of graph clustering and its related concepts (Čopič
et al., 2005). The starting point is again the planted par-
tition model (Section XIV), with probabilities pin and
pout. A novelty of the approach is the introduction of
the size matrix S, whose element Sij indicates the max-

www.manaraa.com

45

imum strength of interaction between vertices i and j.
For instance, in a graph with unweighted connections,
all elements of S equal 1. In this case, the probabil-
ity that the graph conceals a community structure co-
incides with the expression (61) by Hastings. Čopič et
al. used this probability as a quality function to define
rankings between graph partitions (likelihood rankings).
The authors show that the likelihood rankings satisfy a
number of general properties, which should be satisfied
by any reasonable ranking. They also propose an algo-
rithm to find the maximum likelihood partition, by using
the auxiliary concept of pseudo-community structure, i.
e. a grouping of the graph vertices in which it is speci-
fied which pairs of vertices stay in the same community
and which pairs instead stay in different communities. A
pseudo-community may not be a community because the
transitive property is not generally valid, as the focus is
on pairwise vertex relationships: it may happen that i
and j are classified in the same group, and that j and
k are classified in the same group, but that i and k are
not classified as belonging to the same group. We believe
that the work by Čopič et al. is an important first step
towards a more rigorous formalization of the problem of
graph clustering.

Zanghi et al. (Zanghi et al., 2008) have designed a
clustering technique that lies somewhat in between the
method by Hastings and that by Newman and Leicht.
As in (Hastings, 2006), they use the planted partition
model to represent a graph with community structure; as
in (Newman and Leicht, 2007), they maximize the clas-
sification likelihood using an expectation-maximization
algorithm (Dempster et al., 1977). The algorithm runs
for a fixed number of clusters q, like that by Newman
and Leicht; however, the optimal number of clusters can
be determined by running the algorithm for a range of
q-values and selecting the solution that maximizes the
Integrated Classification Likelihood introduced by Bier-
nacki et al. (Biernacki et al., 2000). The time complexity
of the algorithm is O(n2).

Hofman and Wiggins have proposed a general Bayesian
approach to the problem of graph clustering (Hofman
and Wiggins, 2008). Like Hastings (Hastings, 2006),
they model a graph with community structure as in the
planted partition problem (Section XIV), in that there
are two probabilities θc and θd that there is an edge
between vertices of the same or different clusters, re-
spectively. The unobserved community structure is in-
dicated by the set of labels ~σ for the vertices; πr is
again the fraction of vertices in group r. The con-
jugate prior distributions p(~θ) and p(~π) are chosen to
be Beta and Dirichlet distributions. The most prob-
able number of clusters K∗ maximizes the conditional
probability p(K|A) that there are K clusters, given the
matrix A. Like Hastings, Hofman and Wiggins as-
sume that the prior probability p(K) on the number
of clusters is a smooth function, therefore maximizing
p(K|A) amounts to maximizing the Bayesian evidence
p(A|K) ∝ p(K|A)/p(K), obtained by integrating the

joint distribution p(A|~σ, ~π, ~θ|K), which is factorizable,
over the model parameters ~θ and ~π. The integration
can be performed exactly only for small graphs. Hofman
and Wiggins used Variational Bayes (Beal, 2003; Jordan
et al., 1999), in order to compute controlled approxima-
tions of p(A|K). The complexity of the algorithm was es-
timated numerically on synthetic graphs, yielding O(nα),
with α = 1.44. In fact, the main limitation comes from
high memory requirements. The method is more power-
ful than the one by Hastings (Hastings, 2006), in that the
edge probabilities ~θ are inferred by the procedure itself
and need not be specified (or guessed) at the beginning.
It also includes the expectation-maximization approach
by Newman and Leicht (Newman and Leicht, 2007) as a
special case, with the big advantage that the number of
clusters need not be given as an input, but is an output of
the method. The software of the algorithm can be found
at http://www.columbia.edu/∼chw2/.

We conclude with a brief summary on the tech-
niques described above, coming back to our notation
at the beginning of the section. In the method by
Hastings, one maximizes the likelihood P (D|{q}, {π}, k)
over the set of all possible community assignments
{q}, given the number of clusters k and the model
parameters (i.e. the linking probabilities pin and
pout). Newman and Leicht maximize the likelihood
P (D|{q}, {π}, k) for a given number of clusters, over the
possible choices for the model parameters and commu-
nity assignments, by deriving the optimal choices for
both variables with a self-consistent procedure. Hof-
man and Wiggins maximize the likelihood PHW (k) =∑
{q}
∫
P (D|{q}, {π}, k)P ({q}|{π})P ({π})dπ over the

possible choices for the number of clusters.

B. Blockmodeling, model selection & information theory

Block modeling is a common approach in statistics and
social network analysis to decompose a graph in classes
of vertices with common properties. In this way, a sim-
pler description of the graph is attained. Vertices are
usually grouped in classes of equivalence. There are two
main definitions of topological equivalence for vertices:
structural equivalence (F.Lorrain and White, 1971) (Sec-
tion III.B.4), in which vertices are equivalent if they have
the same neighbors9; regular equivalence (Everett and
Borgatti, 1994; White and Reitz, 1983), in which vertices
of a class have similar connection patterns to vertices of
the other classes (ex. parents/children). Regular equiv-
alence does not require that ties/edges are restricted to
specific target vertices, so it is a more general concept
than structural equivalence. Indeed, vertices which are

9 More generally, if they have the same ties/edges to the same
vertices, as in a social network there may be different types of
ties/edges.)

www.manaraa.com

46

structurally equivalent are also regularly equivalent, but
the inverse is not true. The concept of structural equiva-
lence can be generalized to probabilistic models, in which
one compares classes of graphs, not single graphs, charac-
terized by a set of linking probabilities between the ver-
tices. In this case, vertices are organized in classes such
that the linking probabilities of a vertex with all other
vertices of the graph are the same for vertices in the same
class, which are called stochastically equivalent (Fienberg
and Wasserman, 1981; Holland et al., 1983).

A thorough discussion of blockmodeling is beyond the
scope of this review: we point the reader to (Doreian
et al., 2005). Here we discuss a recent work by Reichardt
and White (Reichardt and White, 2007). Let us suppose
to have a directed graph with n vertices and m edges. A
classification of the graph is indicated by the set of labels
{σ}, where σi = 1, 2, ..., q is the class of vertex i. The
corresponding blockmodel, or image graph, is expressed
by a q×q adjacency matrix B: Bq1q2 = 1 if edges between
class q1 and q2 are allowed, otherwise it is zero. The
aim is finding the classification {σ} and the matrix B
that best fit the adjacency matrix A of the graph. The
goodness of the fit is expressed by the quality function

QB({σ}) =
1
m

∑
i 6=j

[aijAijBσiσj
+ bij(1−Aij)(1−Bσiσj

)],

(64)
where aij (bij) reward the presence (absence) of edges
between vertices if there are edges (non-edges) between
the corresponding classes, and m is the number of edges
of the graph, as usual. Eq. 64 can be rewritten as a sum
over the classes

QB({σ}) =
q∑
r,s

(ers − [ers])Brs, (65)

by setting ers = (1/m)
∑
i 6=j(aij + bij)Aijδσirδσjs and

[ers] = (1/m)
∑
i6=j bijδσirδσjs. If one sets aij = 1 − pij

and bij = pij , pij can be interpreted as the linking prob-
ability between i and j, in some null model. Thereof,
ers becomes the number of edges running between ver-
tices of class r and s, and [ers] the expected number
of edges in the null model. Reichardt and White set
pij = kouti kinj /m, which defines the same null model
of Newman-Girvan modularity for directed graphs (Sec-
tion VI.B). In fact, if the image graph has only self-
edges, i.e. Brs = δrs, the quality function QB({σ})
exactly matches modularity. Other choices for the im-
age graph are possible, however. For instance, a matrix
Brs = 1 − δrs describes the classes of a q-partite graph
(Section A.1). From Eq. 65 we see that, for a given clas-
sification {σ}, the image graph that yields the largest
value of the quality function QB({σ}) is that in which
Brs = 1 when the term ers − [ers] is non-negative, and
Brs = 0 when the term ers − [ers] is non-positive. So,
the best classification is the one maximizing the quality

function

Q∗({σ}) =
1
2

q∑
r,s

||ers − [ers]||, (66)

where all terms of the sum are taken in absolute value.
The function Q∗({σ}) is maximized via simulated an-
nealing. The absolute maximum Qmax is obtained by
construction when q matches the number q∗ of structural
equivalence classes of the graph. However, the absolute
maximum Qmax does not have a meaning by itself, as
one can achieve fairly high values of Q∗({σ}) also for null
model instances of the original graph, i. e. if one random-
izes the graph by keeping the same expected indegree and
outdegree sequences. In practical applications, the opti-
mal number of classes is determined by comparing the ra-
tio Q∗(q)/Qmax (Q∗(q) is the maximum of Q∗({σ}) for q
classes) with the expected ratio for the null model. Since
classifications for different q-values are not hierarchically
ordered, overlaps between classes may be detected. The
method can be trivially extended to the case of weighted
graphs.

Model selection (Burnham and Anderson, 2002) aims
at finding models which are at the same time simple and
good at describing a system/process. A basic example of
a model selection problem is curve fitting. There is no
clear-cut recipe to select a model, but a bunch of heuris-
tics, like Akaike Information Criterion (AIC) (Akaike,
1974), Bayesian Information Criterion (BIC) (Schwarz,
1978), Minimum Description Length (MDL) (Grünwald
et al., 2005; Rissanen, 1978), Minimum Message Length
(MML) (Wallace and Boulton, 1968), etc..

The modular structure of a graph can be considered
as a compressed description of the graph to approximate
the whole information contained in its adjacency matrix.
Based on this idea, Rosvall and Bergstrom (Rosvall and
Bergstrom, 2007) envisioned a communication process in
which a partition of a graph in communities represents a
synthesis Y of the full structure that a signaler sends to
a receiver, who tries to infer the original graph topology
X from it (Fig. 20). The same idea is at the basis of an
earlier method by Sun et al. (Sun et al., 2007), which was
originally designed for bipartite graphs evolving in time
and will be described in Section XV.B. The best partition
corresponds to the signal Y that contains the most infor-
mation about X. This can be quantitatively assessed by
the minimization of the conditional information H(X|Y)
of X given Y ,

H(X|Y) = log

 q∏
i=1

(
ni(ni − 1)/2

lii

)∏
i>j

(
ninj
lij

) , (67)

where q is the number of clusters, ni the number of ver-
tices in cluster i, lij the number of edges between clusters
i and j. We remark that, if one imposes no constraints
on q, H(X|Y) is minimal in the trivial case in which
X = Y (H(X|X) = 0). This solution is not acceptable

www.manaraa.com

47

estimates

X Y Z
Signal

Encoder Decoder

n

n

l

Actual
network

Network

l

l

l

l
n l

FIG. 20 Basic principle of the method by Rosvall and Bergstrom (Rosvall and Bergstrom, 2007). An encoder sends to a
decoder a compressed information about the topology of the graph on the left. The information gives a coarse description of
the graph, which is used by the decoder to deduce the original graph structure. Reprinted figure with permission from (Rosvall
and Bergstrom, 2007). c©2007 by the National Academy of Science of the USA.

because it does not correspond to a compression of infor-
mation with respect to the original data set. One has to
look for the ideal tradeoff between a good compression
and a small enough information H(X|Y). The Minimum
Description Length (MDL) principle (Grünwald et al.,
2005; Rissanen, 1978) provides a solution to this prob-
lem, which amounts to the minimization of a function
given by H(X|Y) plus a function of the number n of
vertices, m of edges and q of clusters. The optimiza-
tion is performed by simulated annealing, so the method
is rather slow and can be applied to graphs with up to
about 104 vertices. However, faster techniques may in
principle be used, even if they imply a loss in accuracy.
The method appears superior than modularity optimiza-
tion, especially when communities are of different sizes.
This comes from tests performed on the benchmark of
Girvan and Newman (Girvan and Newman, 2002) (Sec-
tion XIV.A), both in its original version and in asymmet-
ric versions, proposed by the authors, where the clusters
have different sizes or different average degrees. In ad-
dition, it can detect other types of vertex classifications
than communities, as in Eq. 67 there are no constraints
on the relative importance of the edge densities within
communities with respect to the edge densities between
communities. The software of the algorithm can be found
at http://www.tp.umu.se/∼rosvall/code.html.

In a recent paper (Rosvall and Bergstrom, 2008), Ros-
vall and Bergstrom pursued the same idea of describing
a graph by using less information than that encoded in
the full adjacency matrix. The goal is to optimally com-
press the information needed to describe the process of
information diffusion across the graph. Random walk
is chosen as a proxy of information diffusion. A two-
level description, in which one gives unique names to im-

portant structures of the graph and to vertices within
the same structure, but the vertex names are recycled
among different structures, leads to a more compact de-
scription than by simply coding all vertices with different
names. This is similar to the procedure usually adopted
in geographic maps, where the structures are cities and
one usually chooses the same names for streets of dif-
ferent cities, as long as there is only one street with a
given name in the same city. Huffman coding (Huffman,
1952) is used to name vertices. For the random walk, the
above-mentioned structures are communities, as it is in-
tuitive that walkers will spend a lot of time within them,
so they play a crucial role in the process of information
diffusion. Graph clustering turns then into the following
coding problem: finding the partition that yields the min-
imum description length of an infinite random walk. Such
description length consists of two terms, expressing the
Shannon entropy of the random walk within and between
clusters. The optimum is computed by combining greedy
search with simulated annealing. The method can be ap-
plied to weighted graphs, both undirected and directed.
In the latter case, the random walk process is modified
by introducing a jump probability τ , to guarantee ergod-
icity, just like in Google’s Pagerank algorithm (Brin and
Page, 1998). The partitions of directed graphs obtained
by the method differ from those derived by optimizing
the directed version of Newman-Girvan modularity (Sec-
tion VI.B): this is due to the fact that modularity focuses
on pairwise relationships between vertices, so it does not
capture flows. The code of the method is available at
http://www.tp.umu.se/∼rosvall/code.html.

Information theory has also been used to detect com-
munities in graphs. Ziv et al. (Ziv et al., 2005) have de-
signed a method in which the information contained in

www.manaraa.com

48

the graph topology is compressed such to preserve some
predefined information. This is the basic principle of the
information bottleneck method (Tishby et al., 1999). To
understand this criterion, we need to introduce an impor-
tant measure, the mutual information I(X,Y) (Mackay,
2003) of two random variables X and Y . It is defined as

I(X,Y) =
∑
x

∑
y

P (x, y) log
P (x, y)
P (x)P (y)

, (68)

where P (x) indicates the probability that X = x (simi-
larly for P (y)) and P (x, y) is the joint probability of X
and Y , i. e. P (x, y) = P (X = x, Y = y). The measure
I(X,Y) tells how much we learn about X if we know
Y , and viceversa. If X is the input variable, Z the vari-
able specifying the partition and Y the variable encoding
the information we want to keep, which is called relevant
variable, the goal is to minimize the mutual information
between X and Z (to achieve the largest possible data
compression), under the constraint that the information
on Y extractable from Z be accurate. The optimal trade-
off between the values of I(X,Z) and I(Y, Z) (i.e. com-
pression versus accuracy) is expressed by the minimiza-
tion of a functional, where the relative weight of the two
contributions is given by a parameter playing the role of a
temperature. In the case of graph clustering, the question
is what to choose as relevant information variable. Ziv
et al. proposed to adopt the structural information en-
coded in the process of diffusion on the graph. They also
introduce the concept of network modularity, which char-
acterizes the graph as a whole, not a specific partition like
the modularity by Newman and Girvan (Section III.C.2).
The network modularity is defined as the area under the
information curve, which essentially represents the rela-
tion between the extent of compression and accuracy for
all solutions found by the method and all possible num-
bers of clusters. The software of the algorithm by Ziv et
al. can be found at http://www.columbia.edu/∼chw2/.

X. OTHER METHODS

In this section we describe some algorithms that do
not fit in the previous categories, although some overlap
is possible.

Raghavan et al. (Raghavan et al., 2007) have designed
a simple and fast method based on label propagation.
Vertices are initially given unique labels (e.g. their ver-
tex labels). At each iteration, a sweep over all vertices,
in random sequential order, is performed: each vertex
takes the label shared by the majority of its neighbors.
If there is no unique majority, one of the majority labels
is picked at random. In this way, labels propagate across
the graph: most labels will disappear, others will domi-
nate. The process reaches convergence when each vertex
has the majority label of its neighbors. Communities
are defined as groups of vertices having identical labels
at convergence. By construction, each vertex has more

neighbors in its community than in any other commu-
nity. This resembles the strong definition of community
we have discussed in Section III.B.2, although the latter
is stricter, in that each vertex must have more neighbors
in its community than in the rest of the graph. The al-
gorithm does not deliver a unique solution. Due to the
many ties encountered along the process it is possible
to derive different partitions starting from the same ini-
tial condition, with different random seeds. Tests on real
graphs show that all partitions found are similar to each
other, though. The most precise information that one can
extract from the method is contained by aggregating the
various partitions obtained, which can be done in various
ways. The authors proposed to label each vertex with the
set of all labels it has in different partitions. Aggregat-
ing partitions enables one to detect possible overlapping
communities. The main advantage of the method is the
fact that it does not need any information on the num-
ber and the size of the clusters. It does not need any
parameter, either. The time complexity of each itera-
tion of the algorithm is O(m), the number of iterations
to convergence appears independent of the graph size, or
growing very slowly with it. So the technique is really
fast and could be used for the analysis of large systems.
In a recent paper (Tibély and Kertész, 2008), Tibély and
Kertész showed that the method is equivalent to finding
the local energy minima of a simple zero-temperature ki-
netic Potts model, and that the number of such energy
minima is considerably larger than the number of vertices
of the graph. Aggregating partitions as Raghavan et al.
suggest leads to a fragmentation of the resulting partition
in clusters that are the smaller, the larger the number of
aggregated partitions. This is potentially a serious prob-
lem of the algorithm by Raghavan et al., especially when
large graphs are investigated.

Bagrow and Bollt designed an agglomerative tech-
nique, called L-shell method (Bagrow and Bollt, 2005).
It is a procedure that finds the community of any ver-
tex, although the authors also presented a more gen-
eral procedure to identify the full community structure
of the graph. Communities are defined locally, based
on a simple criterion involving the number of edges in-
side and outside a group of vertices. One starts from a
vertex-origin and keeps adding vertices lying on succes-
sive shells, where a shell is defined as a set of vertices at a
fixed geodesic distance from the origin. The first shell in-
cludes the nearest neighbours of the origin, the second the
next-to-nearest neighbours, and so on. At each iteration,
one calculates the number of edges connecting vertices of
the new layer to vertices inside and outside the running
cluster. If the ratio of these two numbers (“emerging de-
gree”) exceeds some predefined threshold, the vertices of
the new shell are added to the cluster, otherwise the pro-
cess stops. The idea of closing a community by expanding
a shell has been previously introduced by Costa (da Fon-
toura Costa, 2004), in which shells are centered on hubs.
However, in this procedure the number of clusters is pre-
assigned and no cluster can contain more than one hub.

www.manaraa.com

49

C

B

B

U

U

FIG. 21 Schematic picture of a community C used in the
definition of localized modularity by Clauset (Clauset, 2005).
The black area indicates the subgraph of C including all ver-
tices of C, whose neighbors are also in C. The boundary B
entails the vertices of C with at least one neighbor outside the
community. Reprinted figure with permission from (Clauset,
2005). c©2005 by the American Physical Society.

Because of the local nature of the process, the L-shell
method is very fast and can identify communities very
quickly. By repeating the process starting from every
vertex, one could derive a membership matrix M : the el-
ement Mij is one if vertex j belongs to the community of
vertex i, otherwise it is zero. The membership matrix can
be rewritten by suitably permutating rows and columns
based on their mutual distances. The distance between
two rows (or columns) is defined as the number of entries
whose elements differ. If the graph has a clear community
structure, the membership matrix takes a block-diagonal
form, where the blocks identify the communities. The
method enables one to detect overlaps between commu-
nities as well (Porter et al., 2007). Unfortunately, the
rearrangement of the matrix requires a time O(n3), so
it is quite slow. In a different algorithm by Clauset,
local communities are discovered through greedy max-
imization of a local modularity measure (Clauset, 2005).
Given a community C, the boundary B is the set of ver-
tices of C with at least one neighbor outside C (Fig. 21).
The localized modularity R by Clauset is the ratio of the
number of edges having both endpoints in C (but at least
one in B), with the number of edges having at least one
endpoint in B. It is a measure of the sharpness of the
community boundary. Its optimization consists of a lo-
cal exploration of the community starting from a source
vertex: at each step the neighboring vertex yielding the
largest increase (smallest decrease) of R is added, until
the community has reached a predefinite size nc. This
greedy optimization takes a time O(n2

c〈k〉), where 〈k〉 is

the average degree of the graph.
Another method, where communities are defined based

on a local criterion, was presented by Eckmann and
Moses (Eckmann and Moses, 2002). The idea is to use
the clustering coefficient (Watts and Strogatz, 1998) of
a vertex as a quantity to distinguish tightly connected
groups of vertices. Many edges mean many loops inside
a community, so the vertices of a community are likely
to have a large clustering coefficient. The latter can be
related to the average distance between pairs of neigh-
bours of the vertex. The possible values of the distance
are 1 (if neighbors are connected) or 2 (if they are not),
so the average distance lies between 1 and 2. The more
triangles there are in the subgraph, the shorter the av-
erage distance. Since each vertex always has distance 1
from its neighbours, the fact that the average distance
between its neighbours is different from 1 reminds what
happens when one measures segments on a curved sur-
face. Endowed with a metric, represented by the geodesic
distance between vertices/points, and a curvature, the
graph can be embedded in a geometric space. Communi-
ties appear as portions of the graph with a large curva-
ture. The algorithm was applied to the graph represen-
tation of the World Wide Web, where vertices are Web
pages and edges are the hyperlinks that take users from a
page to the other. The authors found that communities
correspond to Web pages dealing with the same topic.

A fast algorithm by Wu and Huberman identifies com-
munities based on the properties of resistor networks (Wu
and Huberman, 2004). It is essentially a method for par-
titioning graphs in two parts, similar to spectral bisec-
tion, although partitions in an arbitrary number of com-
munities can be obtained by iterative applications. The
graph is transformed into a resistor network where each
edge has unit resistance. A unit potential difference is
set between two randomly chosen vertices. The idea is
that, if there is a clear division in two communities of
the graph, there will be a visible gap between voltage
values for vertices at the borders between the clusters.
The voltages are calculated by solving Kirchoff’s equa-
tions: an exact resolution would be too time consuming,
but it is possible to find a reasonably good approximation
in a linear time for a sparse graph with a clear commu-
nity structure, so the more time consuming part of the
algorithm is the sorting of the voltage values, which takes
time O(n log n). Any possible vertex pair can be chosen
to set the initial potential difference, so the procedure
should be repeated for all possible vertex pairs. The au-
thors showed that this is not necessary, and that a limited
number of sampling pairs is sufficient to get good results,
so the algorithm scales as O(n log n) and is very fast. An
interesting feature of the method is that it can quickly
find the natural community of any vertex, without de-
termining the complete partition of the graph. For that,
one uses the vertex as source voltage and places the sink
at an arbitrary vertex. The same feature is present in an
older algorithm by Flake et al. (Flake et al., 2002), where
one uses max-flow instead of current flow (Section IV.A).

www.manaraa.com

50

The limit of the method is the fact that one has to give as
input the number of clusters, which is usually not known
beforehand.

Ohkubo and Tanaka (Ohkubo and Tanaka, 2006)
pointed out that, since communities are rather compact
structures, they should have a small volume, where the
volume of a community is defined as the ratio of the
number of vertices by the internal edge density of the
community. Ohkubo and Tanaka assumed that the sum
Vtotal of the volumes of the communities of a partition is
a reliable index of the goodness of the partition. So, the
most relevant partition is the one minimizing Vtotal. The
optimization is carried out with simulated annealing.

Zarei and Samani (Zarei and Samani, 2009) remarked
that there is a symmetry between community structure
and anti-community (multipartite) structure, when one
considers a graph and its complement, whose edges are
the missing edges of the original graph. In fact, if a graph
has a well identified communities, the same groups of
vertices would be strong anti-communities in the com-
plement graph, i. e. they should have a few intra-
cluster edges and many inter-cluster edges. Based on
this remark, the communities of a graph can be iden-
tified by looking for anticommunities in the comple-
ment graph, which can sometimes be easier. Zarei and
Samani devised a spectral method using matrices of the
complement graph. The results of this technique ap-
pear good as compared to other spectral methods on
artificial graphs generated with the planted `-partition
model (Condon and Karp, 2001), as well as on Zachary’s
karate club (Zachary, 1977), Lusseau’s dolphins’ net-
work (Lusseau, 2003) and a network of protein-protein
interactions. However, the authors have used very small
graphs for testing. Communities make sense on sparse
graphs, but the complements of large sparse graphs would
not be sparse, but very dense, and their community (mul-
tipartite) structure basically invisible.

Gudkov and Montealegre detected communities by
means of dynamical simplex evolution (Gudkov et al.,
2008). Graph vertices are represented as points in an
(n − 1)-dimensional space. Each point initially sits on
the n vertices of a simplex, and then moves in space
due to forces exerted by the other points. If vertices
are neighbors, the mutual force acting on their repre-
sentative points is attractive, otherwise it is repulsive.
If the graph has a clear community structure, the cor-
responding spatial clusters repel each other because of
the few connections between them (repulsion dominates
over attraction). If communities are more mixed with
each other, clusters are not well separated and they could
be mistakenly aggregated in larger structures. To avoid
that, Gudkov and Montealegre defined clusters as groups
of points such that the distance between each pair of
points does not exceed a given threshold, which can be
arbitrarily tuned, to reveal structures at different resolu-
tions (Section XII.A). The algorithm consists in solving
first-order differential equations, describing the dynam-
ics of mass points moving in a viscous medium. The

complexity of the procedure is O(n2). Differential equa-
tions are also at the basis of a recent method designed by
Krawczyk and Ku lakowski (Krawczyk, 2008; Krawczyk
and Kulakowski, 2007). Here the equations describe a
dynamic process, in which the original graph topology
evolves to a disconnected graph, whose components are
the clusters of the original graph.

XI. METHODS TO FIND OVERLAPPING
COMMUNITIES

Most of the methods discussed in the previous sec-
tions aim at detecting standard partitions, i.e. partitions
in which each vertex is assigned to a single community.
However, in real graphs vertices are often shared between
communities (Section II), and the issue of detecting over-
lapping communities has become quite popular in the last
few years. We devote this section to the main techniques
to detect overlapping communities.

A. Clique percolation

The most popular technique is the Clique Percolation
Method (CPM) by Palla et al. (Palla et al., 2005). It is
based on the concept that the internal edges of commu-
nity are likely to form cliques due to their high density.
On the other hand, it is unlikely that intercommunity
edges form cliques: this idea was already used in the di-
visive method of Radicchi et al. (Section V.B). Palla et
al. use the term k-clique to indicate a complete graph
with k vertices10. Notice that a k-clique is different from
the n-clique (see Section III.B.2) used in social science. If
it were possible for a clique to move on a graph, in some
way, it would probably get trapped inside its original
community, as it could not cross the bottleneck formed by
the intercommunity edges. Palla et al. introduced a num-
ber of concepts to implement this idea. Two k-cliques are
adjacent if they share k − 1 vertices. The union of adja-
cent k-cliques is called k-clique chain. Two k-cliques are
connected if they are part of a k-clique chain. Finally, a
k-clique community is the largest connected subgraph ob-
tained by the union of a k-clique and of all k-cliques which
are connected to it. Examples of k-clique communities
are shown in Fig. 22. One could say that a k-clique com-
munity is identified by making a k-clique “roll” over ad-
jacent k-cliques, where rolling means rotating a k-clique
about the k − 1 vertices it shares with any adjacent k-
clique. By construction, k-clique communities can share
vertices, so they can be overlapping. There may be ver-
tices belonging to non-adjacent k-cliques, which could be
reached by different paths and end up in different clus-
ters. In order to find k-clique communities, one searches

10 In graph theory the k-clique by Palla et al. is simply called
clique, or complete graph, with k vertices (Section A.1).

www.manaraa.com

51

FIG. 22 Clique Percolation Method. The example shows
communities spanned by adjacent 3-cliques (triangles). Over-
lapping vertices are shown by the bigger dots. Reprinted fig-
ure with permission from (Palla et al., 2005). c©2005 by the
Nature Publishing Group.

first for maximal cliques. Then a clique-clique overlap
matrix O is built (Everett and Borgatti, 1998), which
is an nc × nc matrix, nc being the number of cliques;
Oij is the number of vertices shared by cliques i and j.
To find k-cliques, one needs simply to keep the entries
of O which are larger than or equal to k − 1, set the
others to zero and find the connected components of the
resulting matrix. Detecting maximal cliques is known to
require a running time that grows exponentially with the
size of the graph. However, the authors found that, for
the real networks they analyzed, the procedure is quite
fast, allowing to analyze graphs with up to 105 vertices
in a reasonably short time. The actual scalability of the
algorithm depends on many factors, and cannot be ex-
pressed in closed form. An interesting aspect of k-clique
communities is that they allow to make a clear distinc-
tion between random graphs and graphs with community
structure. This is a rather delicate issue: we have seen in
Section VI.C that Newman-Girvan modularity can attain
large values on random graphs. Derényi et al. (Derényi
et al., 2005) have studied the percolation properties of
k-cliques on random graphs, when the edge probability
p varies. They found that the threshold pc(k) for the
emergence of a giant k-clique community, i.e. a com-
munity occupying a macroscopic portion of the graph, is
pc(k) = [(k−1)n]−1/(k−1), n being the number of vertices
of the graph, as usual. For k = 2, for which the k-cliques
reduce to edges, one recovers the known expression for
the emergence of a giant connected component in Erdös-
Rényi graphs (Section A.3). This percolation transition
is quite sharp: if the edge probability p < pc(k), k-clique

communities are rather small; if p > pc(k) there is a gi-
ant component and many small communities. To assess
the significance of the clusters found with the CPM, one
can compare the detected cover11 with the cover found
on a null model graph, which is random but preserves
the expected degree sequence of the original graph. The
modularity of Newman and Girvan is based on the same
null model (Section III.C.2). The null models of real
graphs seem to display the same two scenarios found
for Erdös-Rényi graphs, characterized by the presence
of very small k-clique communities, with or without a
giant cluster. Therefore, covers with k-clique communi-
ties of large or appreciable size can hardly be due to
random fluctuations. Palla and coworkers (Adamcsek
et al., 2006) have designed a software package implement-
ing the CPM, called CFinder, which is freely available
(www.cfinder.org).

The algorithm has been extended to the analysis of
weighted, directed and bipartite graphs. For weighted
graphs, in principle one can follow the standard proce-
dure of thresholding the weights, and apply the method
on the resulting graphs, treating them as unweighted.
Farkas et al. (Farkas et al., 2007) proposed instead to
threshold the weight of cliques, defined as the geomet-
ric mean of the weights of all edges of the clique. The
value of the threshold is chosen slightly above the criti-
cal value at which a giant k-clique community emerges,
in order to get the richest possible variety of clusters. On
directed graphs, Palla et al. defined directed k-cliques as
complete graphs with k vertices, such that there is an
ordering among the vertices, and each edge goes from a
vertex with higher order to one with lower order. The or-
dering is determined from the restricted outdegree of the
vertex, expressing the fraction of outgoing edges point-
ing to the other vertices of the clique versus the total
outdegree. The method has been extended to bipartite
graphs by Lehmann et al. (Lehmann et al., 2008). In this
case one uses bipartite cliques, or bicliques: a subgraph
Ka,b is a biclique if each of a vertices of one class are
connected with each of b vertices of the other class. Two
cliques Ka,b are adjacent if they share a clique Ka−1,b−1,
and a Ka,b clique community is the union of all Ka,b

cliques that can be reached from each other through a
path of adjacent Ka,b cliques. Finding all Nc bicliques
of a graph is an NP-complete problem (Peeters, 2003),
mostly because the number of bicliques tends to grow
exponentially with the size of the graph. The algorithm
designed by Lehmann et al. to find biclique communities
is similar to the original CPM, and has a total complex-
ity of O(N2

c). On sparse graphs, Nc often grows linearly
with the number of edges m, yielding a time complexity
O(m2). Bicliques are also the main ingredients of BiTec-
tor, a recent algorithm to detect community structure in

11 We remind that cover is the equivalent of partition for overlap-
ping communities.

www.manaraa.com

52

bipartite graphs (Du et al., 2008).

Kumpula et al. have developed a fast implementa-
tion of the CPM, called Sequential Clique Percolation
algorithm (SCP) (Kumpula et al., 2008). It consists in
detecting k-clique communities by sequentially inserting
the edges of the graph at study, one by one, starting
from an initial empty graph. Whenever a new edge is
added, one checks whether new k-cliques are formed, by
searching for (k− 2)-cliques in the subset of neighboring
vertices of the endpoints of the inserted edge. The pro-
cedure requires to build a graph Γ∗, in which the vertices
are (k−1)-cliques and edges are set between vertices cor-
responding to (k− 1)-cliques which are subgraphs of the
same k-clique. At the end of the process, the connected
components of Γ∗ correspond to the searched k-clique
communities. The technique has a time complexity which
is linear in the number of k-cliques of the graph, so it can
vary a lot in practical applications. Nevertheless, it turns
out to be much faster than the original implementation
of the CPM. The big advantage of the SCP, however,
consists of its implementation for weighted graphs. By
inserting edges in decreasing order of weight, one recov-
ers in a single run the community structure of the graph
for all possible weight thresholds, by storing every cover
detected after the addition of each edge. The standard
CPM, instead, needs to be applied once for each thresh-
old. If, instead of edge weight thresholding, one performs
k-clique weight thresholding, as prescribed by Farkas et
al. (Farkas et al., 2007), the SCP remains much faster
than the CPM, if one applies a simple modification to
it, consisting in detecting and storing all k-cliques on the
full graph, sorting them based on their weights, and find-
ing the communities by sequentially adding the k-cliques
in decreasing order of weight.

The CPM has the same limit as the algorithm of Radic-
chi et al. (Radicchi et al., 2004) (Section V.B): it assumes
that the graph has a large number of cliques, so it may
fail to give meaningful covers for graphs with just a few
cliques, like technological networks and some social net-
works. On the other hand, if there are many cliques, the
method may deliver trivial community structure, like a
cover consisting of the whole graph as a single cluster.
Furthermore it is not clear a priori which value of k one
has to choose to identify meaningful structures. Finally,
the criterion to choose the threshold for weighted graphs
and the definition of directed k-cliques are rather arbi-
trary.

B. Other techniques

One of the first methods to find overlapping commu-
nities was designed by Baumes et al. (Baumes et al.,
2005b). A community is defined as a subgraph which
locally optimizes a given function W , typically some mea-

sure related to the edge density of the cluster12. Different
overlapping subsets may all be locally optimal, so vertices
can be shared between communities. Detecting the clus-
ter structure of a graph amounts to finding the set of
all locally optimal clusters. Two efficient heuristics are
proposed, called Iterative Scan (IS) and Rank Removal
(RaRe). IS performs a greedy optimization of the func-
tion W . One starts from a random seed vertex/edge and
adds/deletes vertices one by one as long as W increases.
Then another seed is randomly picked and the procedure
is repeated. The algorithm stops when, by picking any
seed, one recovers a previously identified cluster. RaRe
consists in removing important vertices such to discon-
nect the graphs in small components representing the
cores of the clusters. The importance of vertices is deter-
mined by their centrality scores (e.g. degree, betweenness
centrality (Freeman, 1977)), PageRank (Brin and Page,
1998)). Vertices are removed until one fragments the
graph into components of a given size. After that, the
removed vertices are added again to the graph, and are
associated to those clusters for which doing so increases
the value of the function W . The complexity of IS and
RaRe is O(n2) on sparse graphs. The best performance is
achieved by using IS to refine results obtained from RaRe.
In a successive paper (Baumes et al., 2005a), Baumes et
al. further improved such two-step procedure, in that the
removed vertices in RaRe are reinserted in decreasing or-
der of their centrality scores, and the optimization of W
in IS is only extended to neighboring vertices of the run-
ning cluster. The new recipe maintains time complexity
O(n2), but on sparse graphs it requires a time lower by
an order of magnitude than the old one, while the quality
of the detected clustering is comparable.

A different method, combining spectral mapping, fuzzy
clustering and the optimization of a quality function, has
been presented by Zhang et al. (Zhang et al., 2007). The
membership of vertex i in cluster k is expressed by uik,
which is a number between 0 and 1. The sum of the
uik over all communities k of a cover is 1, for any vertex.
This normalization is suggested by the fact that the entry
uik can be thought of as the probability that i belongs
to community k, so the sum of the uik represents the
probability that the vertex belongs to any community of
the cover, which is necessarily 1. If there were no over-
laps, uik = δkik, where ki represents the unique commu-
nity of vertex i. The algorithm consists of three phases:
1) embedding vertices in Euclidean space; 2) grouping
the corresponding vertex points in a given number nc of
clusters; 3) maximizing a modularity function over the
set of covers found in step 2), corresponding to differ-
ent values of nc. This scheme has been used in other
techniques as well, like in the algorithm of Donetti and

12 Community definitions based on local optimization are adopted
in other algorithms as well, like that by Lancichinetti et al. (Lan-
cichinetti et al., 2009) (Section XII.A).

www.manaraa.com

53

Muñoz (Donetti and Muñoz, 2004) (Section VII). The
first step builds upon a spectral technique introduced by
White and Smyth (White and Smyth, 2005), that we have
discussed in Section VI.A.4. Graph vertices are embed-
ded in a d-dimensional Euclidean space by using the top
d eigenvectors of the matrix W, derived from the adja-
cency matrix A by dividing each element by the sum of
the elements of the same row. The spatial coordinates
of vertex i are the i-th components of the eigenvectors.
In the second step, the vertex points are associated to nc
clusters by using fuzzy k-means clustering (Bezdek, 1981;
Dunn, 1973) (Section IV.C). The number of clusters nc
varies from 2 to a maximum K, so one obtains K − 1
covers. The best cover is the one that yields the largest
value of the modularity Qzhov , defined as

Qzhov =
nc∑
c=1

[W̄c

W
−
(
S̄c

2W

)2]
, (69)

where

W̄c =
∑
i,j∈Vc

uic + ujc
2

wij , (70)

and

S̄c = W̄c +
∑

i∈Vc,j∈V \Vc

uic + (1− ujc)
2

wij . (71)

The sets Vc and V include the vertices of module c and of
the whole network, respectively. Eq. 69 is an extension
of Eq. 34, obtained by weighing the contribution of the
edges’ weights to the sums in Wc and Sc by the (average)
membership coefficients of the vertices of the edge. We
remark that Eq. 69 is the expression of modularity for
the general case of a weighted graph. The determination
of the eigenvectors is the most computationally expen-
sive part of the method, so the time complexity is the
same as that of the algorithm by White and Smyth (see
Section VI.A.4), i.e. O(K2n+Km), which is essentially
linear in n if the graph is sparse and K � n.

Nepusz et al. proposed a different approach based
on vertex similarity (Nepusz et al., 2008). One starts
from the membership matrix U, defined as in the pre-
vious method by Zhang et al. From U a matrix S is
built, where sij =

∑nc

k=1 ukiukj , expressing the similar-
ity between vertices (nc is the number of clusters). If
one assumes to have information about the actual vertex
similarity, corresponding to the matrix S̃, the best cover
is obtained by choosing U such that S approximates as
closely as possible S̃. This amounts to minimize the func-
tion

DG(U) =
n∑
i=1

n∑
j=1

wij(s̃ij − sij)2, (72)

where the wij weigh the importance of the approximation
for each entry of the similarity matrices. In the absence

of any information on the community structure of the
graph, one sets wij = 1, ∀i, j (equal weights) and S̃ equal
to the adjacency matrix A, by implicitly assuming that
vertices are similar if they are neighbors, dissimilar oth-
erwise. On weighted graphs, one can set the wij equal to
the edge weights. Minimizing DG(U) is a nonlinear con-
strained optimization problem, that can be solved with
a gradient-based iterative optimization method, like sim-
ulated annealing. The optimization procedure adopted
by Nepusz et al., for a fixed number of clusters nc, has
a time complexity O(n2nch), where h is the number of
iterations leading to convergence, so the method can only
be applied to fairly small graphs. If nc is unknown, as is
often the case, the best cover is the one corresponding to
the largest value of the modularity

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
sij . (73)

Eq. 73 is very similar to the expression of Newman-
Girvan modularity (Eq. 12): the difference is that the
Kronecker’s δ is replaced by the vertices’ similarity, to ac-
count for overlapping communities. Once the best cover
is identified, one can use the entries of the partition ma-
trix U to evaluate the participation of each vertex in the
nc clusters of the cover. Nepusz et al. defined the brid-
geness bi of a vertex i as

bi = 1−

√√√√ nc
nc − 1

c∑
j=1

(
uji −

1
nc

)2

. (74)

If i belongs to a single cluster, bi = 0. If, for a vertex
i, uik = 1/nc, ∀k, bi = 1 and i is a perfect bridge, as
it lies exactly between all clusters. However, a vertex
with low bi may be simply an outlier, not belonging
to any cluster. Since real bridges are usually rather
central vertices, one can identify them by checking
for large values of the centrality-corrected bridgeness,
obtained by multiplying the bridgeness of Eq. 74 by
the centrality of the vertex (expressed by, e.g., degree,
betweenness (Freeman, 1977), etc.). A variant of the
algorithm by Nepusz et al. can be downloaded from
http://www.cs.rhul.ac.uk/home/tamas/assets/file
s/fuzzyclust-static.tar.gz.

In real networks it is often easier to discriminate be-
tween intercluster and intracluster edges than recogniz-
ing overlapping vertices. For instance, in social networks,
even though many people may belong to more groups,
their social ties within each group can be easily spotted.
Besides, it may happen that communities are joined to
each other through their overlapping vertices (Fig. 23),
without intercluster edges. For these reasons, it has been
recently suggested that defining clusters as sets of edges,
rather than vertices, may be a promising strategy to an-
alyze graphs with overlapping communities (Ahn et al.,
2009; Evans and Lambiotte, 2009). One has to focus
on the line graph (Balakrishnan, 1997), i. e. the graph

www.manaraa.com

54

whose vertices are the edges of the original graph; ver-
tices of the line graph are linked if the corresponding
edges in the original graph are adjacent, i. e. if they
share one of their endvertices. Partitioning the line graph
means grouping the edges of the starting graph13. Evans
and Lambiotte (Evans and Lambiotte, 2009) introduced
a set of quality functions, similar to Newman-Girvan
modularity (Eq. 12), expressing the stability of parti-
tions against random walks taking place on the graph,
following the work of Delvenne et al. (Delvenne et al.,
2008) (Section VIII.B). They considered a projection of
the traditional random walk on the line graph, along with
two other diffusion processes, where walkers move be-
tween adjacent edges (rather than between neighboring
vertices). Evans and Lambiotte optimized the three cor-
responding modularity functions to look for partitions in
two real networks, Zachary’s karate club (Zachary, 1977)
(Section XIV.A) and the network of word associations
derived from the University of South Florida Free Asso-
ciation Norms (Nelson et al., 1998) (Section II). The opti-
mization was carried out with the hierarchical technique
by Blondel et al. (Blondel et al., 2008) and the multi-level
algorithm by Noack and Rotta (Noack and Rotta, 2008).
While the results for the word association network are
reasonable, the test on the karate club yields partitions in
more than two clusters. However, the modularities used
by Evans et Lambiotte can be modified to include longer
random walks (just like in (Delvenne et al., 2008)), and
the length of the walk represents a resolution parameter
that can be tuned to get better results. Ahn et al. (Ahn
et al., 2009) proposed to group edges with an agglomera-
tive hierarchical clustering technique, called hierarchical
link clustering (Section IV.B). They use a similarity mea-
sure for a pair of (adjacent) edges that expresses the size
of the overlap between the neighborhoods of the non-
coincident endvertices, divided by the total number of
(different) neighbors of such endvertices. Groups of edges
are merged pairwise in descending order of similarity, un-
til all edges are together in the same cluster. The result-
ing dendrogram provides the most complete information
on the community structure of the graph. However, as
usual, most of this information is redundant and is an
artefact of the procedure itself. So, Ahn et al. intro-
duced a quality function to select the most meaningful
partition(s), called partition density, which is essentially
the average edge density within the clusters. The method
is able to find meaningful clusters in biological networks,
like protein-protein and metabolic networks, as well as in
a social network of mobile phone communication. It can
also be extended to multipartite and weighted graphs.

The idea of grouping edges is surely interesting. How-
ever it is not a priori better than grouping vertices.

13 Ideally one wants to put together only the edges lying within
clusters, and exclude the others. Therefore partitioning does not
necessarily mean assigning each vertex of the line graph to a
group, as standard clustering techniques would do.

FIG. 23 Communities as sets of edges. In the figure, the
graph has a natural division in two triangles, with the central
vertex shared between them. If communities are identified by
their internal edges, detecting the triangles and their overlap-
ping vertex becomes easier than by using methods that group
vertices. Reprinted figure with permission from (Evans and
Lambiotte, 2009).

In fact, the two situations are somewhat symmetric.
Edges connecting vertices of different clusters are “over-
lapping”, but they will be assigned just to one cluster (or
else the clusters would be merged).

The possibility of having overlapping communities
makes most standard clustering methods inadequate, and
enforces the design of new ad hoc techniques, like the
ones we have described so far. On the other hand, if
it were possible to identify the overlapping vertices and
“separate” them among the clusters they belong to, the
overlaps would be removed and one could then apply
any of the traditional clustering methods to the result-
ing graph. This idea is at the basis of a recent method
proposed by Gregory (Gregory, 2009). It is a three-
stages procedure: first, one transforms the graph into
a larger graph without overlapping vertices; second, a
clustering technique is applied to the resulting graph;
third, one maps the partition obtained into a cover by
replacing the vertices with those of the original graph.
The transformation step, called Peacock, is performed
by identifying the vertices with highest split betweenness
(Section V.A) and splitting them in multiple parts, con-
nected by edges. This is done as long as the split be-
tweenness of the vertices is sufficiently high, which is
determined by a parameter s. In this way, most ver-
tices of the resulting graph are exactly the same one had
initially, the others are multiple copies of the overlap-
ping vertices of the initial graph. The overlaps of the
final cover are obtained by checking if copies of the same
initial vertex end up in different disjoint clusters. The
complexity is dominated by the Peacock algorithm, if
one computes the exact values of the split betweenness
for the vertices, which requires a time O(n3) on a sparse
graph14. Gregory proposed an approximate local compu-

14 The split betweenness needs to be recalculated after each vertex

www.manaraa.com

55

tation, which scales as O(n log n): in this way the total
complexity of the method becomes competitive, if one
chooses a fast algorithm for the identification of the clus-
ters. The goodness of the results depends on the specific
method one uses to find the clusters after the graph trans-
formation. The software of the version of the method
used by Gregory in his applications can be found at
http://www.cs.bris.ac.uk/∼steve/networks/peaco
ckpaper/. The idea of Gregory is interesting, as it al-
lows to exploit traditional methods even in the pres-
ence of overlapping communities. The weakness is repre-
sented by the choice of the parameter s, which determines
whether a vertex is overlapping or not. Choosing a range
of “good” values for s can be done a posteriori, by testing
the methods on artificial graphs with built-in overlapping
communities; however, there is no guarantee that there
is a unique range, the choice may strongly depend on the
specific graph one wants to study.

XII. MULTIRESOLUTION METHODS AND CLUSTER
HIERARCHY

The existence of a resolution limit for Newman-Girvan
modularity (Section VI.C) implies that the straight opti-
mization of quality functions yields a coarse description
of the cluster structure of the graph, at a scale which
has a priori nothing to do with the actual scale of the
clusters. In the absence of information on the cluster
sizes of the graph, a method should be able to explore
all possible scales, to make sure that it will eventually
identify the right communities. Multiresolution methods
are based on this principle. However, many real graphs
display hierarchical cluster structures, with clusters in-
side other clusters (Simon, 1962). In these cases, there
are more levels of organization of vertices in clusters, and
more relevant scales. In principle, clustering algorithms
should be able to identify them. Multiresolution meth-
ods can do the trick, in principle, as they scan continu-
ously the range of possible cluster scales. Recently other
methods have been developed, where partitions are by
construction hierarchically nested in each other. In this
section we discuss both classes of techniques.

A. Multiresolution methods

In general, multiresolution methods have a freely tun-
able parameter, that allows to set the characteristic size
of the clusters to be detected. The general spin glass
framework by Reichardt and Bornholdt ((Reichardt and
Bornholdt, 2006a) and Section VI.B) is a typical exam-
ple, where γ is the resolution parameter. The extension

split, just as one does for the edge betweenness in the Girvan-
Newman algorithm (Girvan and Newman, 2002). Therefore both
computations have the same complexity.

of the method to weighted graphs has been recently dis-
cussed (Heimo et al., 2008).

Pons has proposed a method (Pons, 2006) consisting of
the optimization of multiscale quality functions, includ-
ing the multiscale modularity

QMα =
nc∑
c=1

[
α
lc
m
− (1− α)

(
dc
2m

)2]
, (75)

and two other additive quality functions, derived from
the performance (Eq. 11) and a measure based on the
similarity of vertex pairs. In Eq. 75 0 ≤ α ≤ 1 is the
resolution parameter and the notation is otherwise the
same as in Eq. 13. We see that, for α = 1/2, one recov-
ers standard modularity. However, since multiplicative
factors in QMα do not change the results of the optimiza-
tion, we can divide QMα by α, recovering the same qual-
ity function as in Eq. 44, with γ = (1 − α)/α, up to an
irrelevant multiplicative constant. To evaluate the rele-
vance of the partitions, for any given multiscale quality
function, Pons suggested that the length of the α-range
[αmin(C), αmax(C)], for which a community C “lives” in
the maximum modularity partition, is a good indicator
of the stability of the community. He then defined the
relevance function of a community C at scale α as

Rα(C) =
αmax(C)− αmin(C)

2

+
2(αmax(C)− α)(α− αmin(C))

αmax(C)− αmin(C)
. (76)

The relevance R(α) of a partition P at scale α is the
average of the relevances of the clusters of the partitions,
weighted by the cluster sizes. Peaks in α of R(α) reveal
the most meanigful partitions.

Another interesting technique has been devised by Are-
nas et al. (Arenas et al., 2008b), and consists of a mod-
ification of the original expression of modularity. The
idea is to make vertices contribute as well to the com-
putation of the edge density of the clusters, by adding
a self-loop of strength r to each vertex. Arenas et al.
remarked that the parameter r does not affect the struc-
tural properties of the graph in most cases, which are
usually determined by an adjacency matrix without di-
agonal elements. With the introduction of the vertex
strength r, modularity reads

Qr =
nc∑
c=1

[2Wc +Ncr

2W + nr
−
(
Sc +Ncr

2W + nr

)2]
, (77)

for the general case of a weighted graph. The notation
is the same as in Eq. 34, Nc is the number of vertices
in cluster c. We see that now the relative importance of
the two terms in each summand depends on r, which can
take any value in] − 2W/n,∞[. Arenas et al. made a
sweep in the range of r, and determined for each r the
maximum modularity with extremal optimization (Sec-

www.manaraa.com

56

1 10 100
r - r

asymp

1

10

m
od

ul
es

karate

(I)

r = 0

FIG. 24 Analysis of Zachary’s karate club with the multires-
olution method by Arenas et al. (Arenas et al., 2008b). The
plot shows the number of clusters obtained in correspondence
of the resolution parameter r. The longest plateau (I) indi-
cates the most stable partition, which exactly matches the
social fission observed by Zachary. The partition obtained
with straight modularity optimization (r = 0) consists of four
clusters and is much less stable with respect to I, as suggested
by the much shorter length of its plateau. Reprinted figure
with permission from (Arenas et al., 2008b). c©2008 by IOP
Publishing.

tion VI.A.3) and tabu search15 (Glover, 1986). Mean-
ingful cluster structures correspond to plateaus in the
plot of the number of clusters versus r (Fig. 24). The
length of a plateau gives a measure of the stability of the
partition against the variation of r. The procedure is
able to disclose the community structure of a number of
real benchmark graphs. As expected, the most relevant
partitions can be found in intervals of r not including
the value r = 0, which corresponds to the case of stan-
dard modularity (Fig. 24). A drawback of the method
is that it is very slow, as one has to compute the mod-
ularity maximum for many values of r in order to dis-
criminate between relevant and irrelevant partitions. If
the modularity maximum is computed with precise meth-
ods like simulated annealing and/or extremal optimiza-
tion, as in (Arenas et al., 2008b), only graphs with a few
hundred vertices can be analyzed on a single processor.

15 Tabu search consists in moving single vertices from one com-
munity to another, chosen at random, or to new communities,
starting from some initial partition. After a sweep over all ver-
tices, the best move, i. e. the one producing the largest increase
of modularity, is accepted and applied to the graph, yielding a
new partition. The procedure is repeated until modularity does
not increase further. To escape local optima, a list of recent
accepted moves is kept and updated, so that those moves are
not accepted in the next update of the configuration (tabu list).
The cost of the procedure is about the same of other stochastic
optimization techniques like, e. g. simulated annealing.

On the other hand the algorithm can be trivially paral-
lelized by running the optimization for different values
of r on different processors. This is a common feature
of all multiresolution methods discussed in this Section.
In spite of the different formal expressions of modularity,
the methods by Arenas et al. and Reichardt and Born-
holdt are somewhat related to each other and yield sim-
ilar results (Kumpula et al., 2007a) on Zachary’s karate
club (Zachary, 1977) (Section XIV.A), synthetic graphs á
la Ravasz-Barabási (Ravasz and Barabási, 2003) and on
a model graph with the properties of real weighted social
networks16. In fact, their modularities can be both re-
covered from the continuous-time version of the stability
of clustering under random walk, introduced by Delvenne
et al. (Delvenne et al., 2008) (Section VIII.B).

Lancichinetti et al. have designed a multiresolution
method which is capable of detecting both the hier-
archical structure of graphs and overlapping commu-
nities (Lancichinetti et al., 2009). It is based on the
optimization of a fitness function, which estimates the
strength of a cluster and entails a resolution parameter
α. The function could in principle be arbitrary, in their
applications the authors chose a simple ansatz based on
the tradeoff between the internal and the total degree of
the cluster. The optimization procedure starts from a
cluster with a single vertex, arbitrarily selected. Given a
cluster core, one keeps adding and removing neighboring
vertices of the cluster as long as its fitness increases. The
fitness is recalculated after each addition/removal of a
vertex. At some point one reaches a local maximum and
the cluster is “closed”. Then, another vertex is chosen
at random, among those not yet assigned to a cluster,
a new cluster is built, and so on, until all vertices have
been assigned to clusters. During the buildup of a clus-
ter, vertices already assigned to other clusters may be
included, i.e. communities may overlap. The computa-
tional complexity of the algorithm, estimated on sparse
Erdös-Rényi random graphs, is O(nβ), with β ∼ 2 for
small values of the resolution parameter α, and β ∼ 1 if
α is large. For a complete analysis, the worst-case compu-
tational complexity is O(n2 log n), where the factor log n
comes from the minimum number of different α-values
which are needed to resolve the actual community struc-
ture of the graph. Relevant partitions are revealed by
pronounced spikes in the histogram of the fitness values
of covers obtained for different α-values, where the fitness
of a cover is defined as the average fitness of its clusters.

A technique based on the Potts model, similar to that
of Reichardt and Bornholdt (Reichardt and Bornholdt,
2006a), has been suggested by Ronhovde and Nussi-
nov (Ronhovde and Nussinov, 2008a). The energy of

16 Related does not mean equivalent, though. Arenas et al. have
shown that their method is better than that by Reichardt and
Bornholdt when the graph at hand includes communities of dif-
ferent sizes (Arenas et al., 2008b).

www.manaraa.com

57

their spin model is

H({σ}) = −1
2

∑
i 6=j

[Aij − γ(1−Aij)]δ(σi, σj). (78)

The big difference with Eq. 44 is the absence of a null
model term. The model considers pairs of vertices in the
same community: edges between vertices are energeti-
cally rewarded, whereas missing edges are penalized. The
parameter γ fixes the tradeoff between the two contribu-
tions. The energy is minimized by sequentially shifting
single vertices/spins to the communities which yield the
largest decrease of the system’s energy, until convergence.
If, for each vertex, one just examines the communities of
its neighbors, the energy is minimized in a time O(mβ),
where β turns out to be slightly above 1 in most ap-
plications, enabling the analysis of large graphs. This
essentially eliminates the problem of limited resolution,
as the criterion to decide about the merger or the split
of clusters only depends on local parameters. Still, for
the detection of possible hierarchical levels tuning γ is
mandatory. In a successive paper (Ronhovde and Nussi-
nov, 2008b), the authors have introduced a new stability
criterion for the partitions, consisting of the computation
of the similarity of partitions obtained for the same γ and
different initial conditions. The idea is that, if a partition
is robust in a given range of γ-values, most replicas deliv-
ered by the algorithm will be very similar. On the other
hand, if one explores a region of resolutions in between
two strong partitions, the algorithm will deliver the one
or the other partition and the individual replicas will be,
on average, not so similar to each other. So, by plotting
the similarity as a function of the resolution parameter
γ, stable communities are revealed by peaks. Ronhovde
and Nussinov adopted similarity measures borrowed from
information theory (Section XIV.B). Their criterion of
stability can be adopted to determine the relevance of
partitions obtained with any multiresolution algorithm.

A general problem of multiresolution methods is how
to assess the stability of partitions for large graphs. The
rapidly increasing number of partitions, obtained by min-
imal shifts of vertices between clusters, introduces a large
amount of noise, that blurs signatures of stable partitions
like plateaus, spikes, etc. that one can observe in small
systems. In this respect, it seems far more reliable focus-
ing on correlations between partitions (like the average
similarity used by Ronhovde and Nussinov (Ronhovde
and Nussinov, 2008a,b)) than on properties of the indi-
vidual partitions (like the measures of occurrence used by
Arenas et al. (Arenas et al., 2008b) and by Lancichinetti
et al. (Lancichinetti et al., 2009)).

B. Hierarchical methods

The natural procedure to detect the hierarchical struc-
ture of a graph is hierarchical clustering, that we have
discussed in Section IV.B. There we have emphasized
the main weakness of the procedure, which consists of

the necessity to introduce a criterion to identify relevant
partitions (hierarchical levels) out of the full dendrogram
produced by the given algorithm. Furthermore, there is
no guarantee that the results indeed reflect the actual hi-
erarchical structure of the graph, and that they are not
mere artefacts of the algorithm itself. Scholars have just
started to deal with these problems.

Sales-Pardo et al. have proposed a top-down ap-
proach (Sales-Pardo et al., 2007). Their method con-
sists of two steps: 1) measuring the similarity between
vertices; 2) deriving the hierarchical structure of the
graph from the similarity matrix. The similarity mea-
sure, named node affinity, is based on Newman-Girvan
modularity. Basically the affinity between two vertices
is the frequency with which they coexist in the same
community in partitions corresponding to local optima
of modularity. The latter are configurations for which
modularity is stable, i.e. it cannot increase if one shifts
one vertex from one cluster to another or by merging or
splitting clusters. The set of these partitions is called
Pmax. Before proceeding with the next step, one verifies
whether the graph has a significant community structure
or not. This is done by calculating the z-score (Eq. 49)
for the average modularity of the partitions in Pmax with
respect to the average modularity of partitions with lo-
cal modularity optima of the equivalent ensemble of null
model graphs, obtained as usual by randomly rewiring
the edges of the original graph under the condition that
the expected degree sequence is the same as the degree
sequence of the graph. Large z-scores indicate meaning-
ful cluster structure: Sales-Pardo et al. used a threshold
corresponding to the 1% significance level17. If the graph
has a relevant cluster structure, one proceeds with the
second step, which consists in putting the affinity matrix
in block-diagonal form, by minimizing a cost function ex-
pressing the average distance of connected vertices from
the diagonal. The blocks correspond to the communities
and the recovered partition represents the uppermost or-
ganization level. To determine lower levels, one iterates
the procedure for each subgraph identified at the previous
level, which is treated as an independent graph. The pro-
cedure stops when all blocks found do not have a relevant
cluster structure, i.e. their z-scores are lower than the
threshold. The partitions delivered by the method are
hierarchical by construction, as communities at each level
are nested within communities at higher levels. However,
the method may find no relevant partition (no commu-
nity structure), a single partition (community structure
but no hierarchy) or more (hierarchy) and in this respect
it is better than most existing methods. The algorithm
is not fast, as both the search of local optima for modu-
larity and the rearrangement of the similarity matrix are

17 We remind that the significance of the z-score has to be com-
puted with respect to the actual distribution of the maximum
modularity for the null model graphs, as the latter is not Gaus-
sian (Section VI.C).

www.manaraa.com

58

a

b

c d

e

f

a b c d e f

1

1

1

1

1/9

a b c d e f

1

1

1

1/3

1/4

FIG. 25 Hierarchical random graphs by Clauset et
al. (Clauset et al., 2008). The picture shows two possible den-
drograms for the simple graph on the top. The linking prob-
abilities on the internal nodes of the dendrograms yield the
best fit of the model graphs to the graph at study. Reprinted
figure with permission from (Clauset et al., 2008). c©2008 by
the Nature Publishing Group.

performed with simulated annealing18, but delivers good
results for computer generated networks, and meaningful
partitions for some real networks, like the world airport
network (Barrat et al., 2004), an email exchange network
of a Catalan university (Guimerà et al., 2003), a network
of electronic circuits (Itzkovitz et al., 2005) and metabolic
networks of E. coli (Guimerà et al., 2007).

Clauset et al. (Clauset et al., 2007; Clauset et al., 2008)
described the hierarchical organization of a graph by in-
troducing a class of hierarchical random graphs. A hi-
erarchical random graph is defined by a dendrogram D,
which is the natural representation of the hierarchy, and
by a set of probabilities {pr} associated to the n−1 inter-
nal nodes of the dendrogram. An ancestor of a vertex i is
any internal node of the dendrogram that is encountered
by starting from the “leaf” vertex i and going all the way
up to the top of the dendrogram. The probability that
vertices i and j are linked to each other is given by the
probability pr of the lowest common ancestor of i and
j. Clauset et al. searched for the model (D, {pr}) that
best fits the observed graph topology, by using Bayesian
inference (Section IX.A). The probability that the model
fits the graph is proportional to the likelihood

L(D, {pr}) =
∏
r∈D

pEr
r (1− pr)LrRr−Er . (79)

Here, Er is the number of edges connecting vertices whose
lowest common ancestor is r, Lr and Rr are the numbers
of graph vertices in the left and right subtrees descend-
ing from the dendrogram node r, and the product runs

18 The reordering of the matrix is by far the most time-consuming
part of the method. The situation improves if one adopts faster
optimization strategies than simulated annealing, at the cost of
less accurate results.

over all internal dendrogram nodes. For a given dendro-
gram D, the maximum likelihood L(D) corresponds to
the set of probabilities {p̄r}, where p̄r equals the actual
density of edges Er/(LrRr) between the two subtrees of
r (Fig. 25). One can define the statistical ensemble of
hierarchical random graphs describing a given graph G,
by assigning to each model graph (D, {p̄r}) a probability
proportional to the maximum likelihood L(D). The en-
semble can be sampled by a Markov chain Monte Carlo
method (Newman and Barkema, 1999). The procedure
suggested by Clauset et al. seems to converge to equilib-
rium roughly in a time O(n2), although the actual com-
plexity may be much higher. Still, the authors were able
to investigate graphs with a few thousand vertices. From
sufficiently large sets of model configurations sampled at
equilibrium, one can compute average properties of the
model, e. g. degree distributions, clustering coefficients.
etc., and compare them with the corresponding proper-
ties of the original graph. Tests on real graphs reveal that
the model is indeed capable to describe closely the graph
properties. Furthermore, the model enables one to pre-
dict missing connections between vertices of the original
graph. This is a very important problem (Liben-Nowell
and Kleinberg, 2003): edges of real graphs are the result
of observations/experiments, that may fail to discover
some relationships between the units of the system. From
the ensemble of the hierarchical random graphs one can
derive the average linking probability between all pairs
of graph vertices. By ranking the probabilities corre-
sponding to vertex pairs which are disconnected in the
original graph, one may expect that the pairs with high-
est probabilities are likely to be connected in the system,
even if such connections are not observed. Clauset et al.
pointed out that their method does not deliver a sharp
hierarchical organization for a given graph, but a class of
possible organizations, with well-defined probabilities. It
is certainly reasonable to assume that many structures
are compatible with a given graph topology. In the case
of community structure, it is not clear which informa-
tion one can extract from averaging over the ensemble of
hierarchical random graphs. Moreover, since the hierar-
chical structure is represented by a dendrogram, it is im-
possible to rank partitions according to their relevance.
In fact, the work by Clauset et al. questions the con-
cept of “relevant partition”, and opens a debate in the
scientific community about the meaning itself of graph
clustering. The software of the method can be found at
http://www.santafe.edu/∼aaronc/hierarchy/.

XIII. SIGNIFICANCE OF CLUSTERING

Given a network, many partitions could represent
meaningful clusterings in some sense, and it could be dif-
ficult for some methods to discriminate between them.
Quality functions evaluate the goodness of a partition
(Section III.C.2), so one could say that high quality cor-
responds to meaningful partitions. But this is not nec-

www.manaraa.com

59

essarily true. In Section VI.C we have seen that high
values of the modularity of Newman and Girvan do not
necessarily indicate that a graph has a definite cluster
structure. In particular we have seen that partitions of
random graphs may also achieve considerably large val-
ues ofQ, although we do not expect them to have commu-
nity structure, due to the lack of correlations between the
linking probabilities of the vertices. The optimization of
quality functions, like modularity, delivers the best par-
tition according to the criterion underlying the quality
function. But is the optimal clustering also significant,
i.e. a relevant feature of the graph, or is it just a byprod-
uct of randomness and basic structural properties, like,
e. g. the degree sequence? Very little effort has been
devoted to this crucial issue, that we discuss here.

In some works the concept of significance has been
related to that of robustness or stability of a partition
against random perturbations of the graph structure.
The basic idea is that, if a partition is significant, it will
be recovered even if the structure of the graph is mod-
ified, as long as the modification is not too extensive.
Instead, if a partition is not significant, one expects that
minimal modifications of the graph will suffice to disrupt
the partition, so other clusterings are recovered. A nice
feature of this approach is the fact that it can be applied
for any clustering technique. Gfeller et al. (Gfeller et al.,
2005) considered the general case of weighted graphs. A
graph is modified, in that its edge weights are increased
or decreased by a relative amount 0 < σ < 1. This choice
also allows to account for the possible effects of uncer-
tainties in the values of the edge weights, which result
from measurements/experiments carried out on a given
system. After fixing σ (usually to 0.5), multiple realiza-
tions of the original graph are generated. The best par-
tition for each realization is identified and, for each pair
of adjacent vertices i and j, the in-cluster probability pij
is computed, i.e. the fraction of realizations in which i
and j were classified in the same cluster. Edges with
in-cluster probability smaller than a threshold θ (usually
0.8) are called external edges. The stability of a partition
is estimated through the clustering entropy

S = − 1
m

∑
(i,j):Aij=1

[pij log2 pij − (1− pij) log2(1− pij)],

(80)
where m is, as usual, the number of graph edges, and
the sum runs over all edges. The most stable partition
has pij = 0 along inter-cluster edges and pij = 1 along
intra-cluster edges, which yields S = 0; the most unstable
partition has pij = 1/2 on all edges, yielding S = 1. The
absolute value of S is not meaningful, though, and needs
to be compared with the corresponding value for a null
model graph, similar to the original graph, but with sup-
posedly no cluster structure. Gfeller et al. adopted the
same null model of Newman-Girvan modularity, i.e. the
class of graphs with expected degree sequence coinciding
with that of the original graph. Since the null model is
defined on unweighted graphs, the significance of S can

be assessed only in this case, although it would not be
hard to think of a generalization to weighted graphs. The
approach enables one as well to identify unstable vertices,
i.e. vertices lying at the boundary between clusters. In
order to do that, the external edges are removed and
the connected components of the resulting disconnected
graph are associated with the clusters detected in the
original graph, based on their relative overlap (computed
through Eq. 93). Unstable vertices end up in components
that are not associated to any of the initial clusters. A
weakness of the method by Gfeller et al. is represented by
the two parameters σ and θ, whose values are in principle
arbitrary.

More recently, Karrer et al. (Karrer et al., 2008)
adopted a similar strategy to unweighted graphs. Here
one performs a sweep over all edges: the perturbation
consists in removing each edge with a probability α and
replacing it with another edge between a pair of vertices
(i, j), chosen at random with probability pij = kikj/2m,
where ki and kj are the degrees of i and j. We recognize
the probability of the null model of Girvan-Newman’s
modularity. Indeed, by varying the probability α from
0 to 1 one smoothly interpolates between the original
graph (no perturbation) and the null model (maximal
perturbation). The degree sequence of the graph remains
invariant (on average) along the whole process, by con-
struction. The idea is that the perturbation affects solely
the organization of the vertices, keeping the basic struc-
tural properties. For a given value of α, many realiza-
tions of the perturbed graph are generated, their cluster
structures are identified with some method (Karrer et al.
used modularity optimization) and compared with the
partition obtained from the original unperturbed graph.
The partitions are compared by computing the variation
of information V (Section XIV.B). From the plot of the
average 〈V 〉 versus α one can assess the stability of the
cluster structure of the graph. If 〈V (α)〉 changes rapidly
for small values of α the partition is likely to be unsta-
ble. As in the approach by Gfeller et al. the behaviour of
the function 〈V (α)〉 does not have an absolute meaning,
but needs to be compared with the corresponding curve
obtained for a null model. For consistency, the natural
choice is again the null model of modularity, which is al-
ready used in the process of graph perturbation. The ap-
proaches by Gfeller et al. and Karrer et al., with suitable
modifications, can also be used to check for the stability
of the cluster structure in parts of a graph, up to the level
of individual communities. This is potentially important
as it may happen that some parts of the graph display a
strong community structure and other parts weak or no
community structure at all.

Rosvall and Bergstrom (Rosvall and Bergstrom, 2008)
defined the significance of clusters with the bootstrap
method (Efron and Tibshirani, 1993), which is a stan-
dard procedure to check for the accuracy of a measure-
ment/estimate based on resampling from the empirical
data. The graph at study is supposed to be generated by
a parametric model, which is used to create many sam-

www.manaraa.com

60

ples. This is done by assigning to each edge a weight
taken by a Poisson distribution with mean equal to the
original edge weight. For the initial graph and each sam-
ple one identifies the community structure with some
method, that can be arbitrary. For each cluster of the
partition of the original graph one determines the largest
subset of vertices that are classified in the same cluster
in at least 95% of all bootstrap samples. Identifying such
cluster cores enables one to track the evolution in time
of the community structure, as we will explain in Sec-
tion XV.B.

A different approach has been proposed by Massen
and Doye (Massen and Doye, 2006). They analyzed an
equilibrium canonical ensemble of partitions, with −Q
playing the role of the energy, Q being Newman-Girvan
modularity. This means that the probability of occur-
rence of a partition at temperature T is proportional to
exp(Q/T). The idea is that, if a graph has a significant
cluster structure, at low temperatures one would recover
essentially the same partition, corresponding to the mod-
ularity maximum, which is separated by an appreciable
gap from the modularity values of the other partitions.
On the contrary, graphs with no community structure,
e. g. random graphs, have many competing (local) max-
ima, and the corresponding configurations will emerge
already at low temperatures, since their modularity val-
ues are close to the absolute maximum. These distinct
behaviors can manifest themselves in various ways. For
instance, if one considers the variation of the specific heat
C = −dQ/dT with T , the gap in the modularity land-
scape is associated to a sharp peak of C around some
temperature value, like it happens in a phase transition.
If the gap is small and there are many partitions with
similar modularity values, the peak of C becomes broad.
Another strategy to assess the significance of the max-
imum modularity partition consists of the investigation
of the similarity between partitions recovered at a given
temperature T . This similarity can be expressed by the
frequency matrix, whose element fij indicates the rela-
tive number of times vertices i and j have been classified
in the same cluster. If the graph has a clear commu-
nity structure, at low temperatures the frequency ma-
trix can be put in block-diagonal form, with the blocks
corresponding to the communities of the best partition;
if there is no significant community structure, the fre-
quency matrix is rather homogeneous. The Fiedler eigen-
value λ2, the second smallest eigenvalue of the Lapla-
cian matrix associated to the frequency matrix, allows
to estimate how “block-diagonal” the matrix is (see Sec-
tion IV.A). At low temperatures λ2 ∼ 0 if there is one
(a few) partitions with maximum or near to maximum
modularity; if there are many (almost) degenerate par-
titions, λ2 is appreciably different from zero even when
T → 0. A sharp transition from low to high values of λ2

by varying temperature indicates significant community
structure. Another clear signature of significant commu-
nity structure is the observation of a rapid drop of the
average community size with T , as “strong” communities

break up in many small pieces for a modest temperature
increase, while the disintegration of “weak” communi-
ties takes place more slowly. In scale-free graphs (Sec-
tion A.3) clusters are often not well separated, due to the
presence of the hubs; in these cases the above-mentioned
transitions of ensemble variables are not so sharp and
take place over a broader temperature range. The canon-
ical ensemble of partitions is generated through single
spin heatbath simulated annealing (Reichardt and Born-
holdt, 2006a), combined with parallel tempering (Earl
and Deem, 2005). The approach by Massen and Doye
is useful to recognize graphs without cluster structure, if
the modularity landscape is characterized by many max-
ima with close values. However, it can happen that gaps
between the absolute modularity maximum and the rest
of the modularity values are created by fluctuations, and
the method is unable to identify these situations. Fur-
thermore, the approach heavily relies on modularity and
on a costly technique like simulated annealing: exten-
sions to other quality functions and/or optimization pro-
cedures do not appear straightforward.

In a recent work by Bianconi et al. (Bianconi et al.,
2008b) the notion of entropy of graph ensembles (Bian-
coni, 2008; Bianconi et al., 2008a) is employed to find
out how likely it is for a cluster structure to occur on a
graph with a given degree sequence. The entropy is com-
puted from the number of graph configurations which
are compatible with a given classification of the vertices
in q groups. The clustering is quantitatively described
by fixing the number of edges A(q1, q2) running between
clusters q1 and q2, for all choices of q1 6= q2. Bianconi et
al. proposed the following indicator of clustering signifi-
cance

Θ~k,~q =
Σ~k,~q − 〈Σ~k,π(~q)〉π√
〈δΣ2

~k,π(~q)
〉π

, (81)

where Σ~k,~q is the entropy of the graph configurations with

given degree sequence ~k and clustering ~q (with fixed num-
bers of inter-cluster edges A(q1, q2)), and (Σ~k,π(~q))π is
the average entropy of the configurations with the same
degree sequence and a random permutation π(~q) of the
cluster labels. The absolute value of the entropy Σ~k,~q is
not meaningful, so the comparison of Σ~k,~q and 〈Σ~k,π(~q)〉π
is crucial, as it tells how relevant the actual cluster struc-
ture is with respect to a random classification of the ver-
tices. However, different permutations of the assignments
~q yield different values of the entropy, which can fluctuate
considerably. Therefore one has to compute the standard
deviation 〈δΣ2

~k,π(~q)
〉π of the entropy corresponding to all

random permutations π(~q), to estimate how significant
the difference between Σ~k,~q and (Σ~k,π(~q))π is. In this
way, if Θ~k,~q ≤ 1, the entropy of the given cluster struc-
ture is of the same order as the entropy of some random
permutation of the cluster labels, so it is not relevant.
Instead, if Θ~k,~q � 1, the cluster structure is far more
likely than a random classification of the vertices, so the

www.manaraa.com

61

clustering is relevant. The indicator Θ~k,~q can be simply
generalized to the case of directed and weighted graphs.

We conclude with a general issue which is related to
the significance of community structure. The question is:
given a cluster structure in a graph, can it be recovered
a priori by an algorithm? In a recent paper (Reichardt
and Leone, 2008), Reichardt and Leone studied under
which conditions a special built-in cluster structure can
be recovered. The clusters have equal size and a pair
of vertices is connected with probability p if they belong
to the same cluster, with probability r < p otherwise.
In computer science this is known as the planted parti-
tioning problem (Condon and Karp, 2001). The goal is
to propose algorithms that recover the planted partition
for any choice of p and r. For dense graphs, i.e. graphs
whose average degree grows with the number n of ver-
tices, algorithms can be designed that find the solution
with a probability which equals 1 minus a term that van-
ishes in the limit of infinite graph size, regardless of the
difference p − r, which can then be chosen arbitrarily
small. Since many real networks are not dense graphs,
as their average degree 〈k〉 is usually much smaller than
n and does not depend on it, Reichardt and Leone inves-
tigated the problem in the case of fixed 〈k〉 and infinite
graph size. We indicate with q the number of clusters and
with pin the probability that a randomly selected edge of
the graph lies within any of the q clusters. In this way,
if pin = 1/q, the inter-cluster edge density matches the
intra-cluster edge density (i.e. p = r), and the planted
partition would not correspond to a recoverable cluster-
ing, whereas for pin = 1, there are no inter-cluster edges
and the partition can be trivially recovered. The value
of pin is in principle unknown, so one has to detect the
cluster structure ignoring this information. Reichardt
and Leone proposed to look for a minimum cut parti-
tion, i.e. for the partition that minimizes the number of
inter-cluster edges, as it is usually done in the graph par-
titioning problem (discussed in Section IV.A). Clearly,
for pin = 1 the minimum cut partition trivially coincides
with the planted partition, whereas for 1/q < pin < 1
there should be some overlap, which is expected to vanish
in the limit case pin = 1/q. The minimum cut partition
corresponds to the minimum of the following ferromag-
netic Potts model Hamiltonian

Hpart = −
∑
i<j

Jijδσi,σj
, (82)

over the set of all spin configurations with zero magne-
tization. Here the spin σi indicates the cluster vertex i
belongs to, and the coupling matrix Jij is just the adja-
cency matrix of the graph. The constraint of zero magne-
tization ensures that the clusters have all the same size,
as required by the planted partitioning problem. The
energy of a spin configuration, expressed by Eq. 82, is
the negative of the number of edges that lie within clus-
ters: the minimum energy corresponds to the maximum
number of intra-cluster edges, which is coupled to the
minimum number of inter-cluster edges. The minimum

energy can be computed with the cavity method, or be-
lief propagation, at zero temperature (Mézard and Parisi,
2003). The accuracy of the solution with respect to the
planted solution is expressed by the fraction of vertices
which are put in the same class in both partitions. The
analysis yields a striking result: the planted clustering is
accurately recovered for pin larger than a critical thresh-
old pcin > 1/q. So, there is a range of values of pin,
1/q < pin < pcin, in which the clustering is not recover-
able, as the minimum cut partition is uncorrelated with
it. The threshold pcin depends on the degree distribution
p(k) of the graph.

XIV. TESTING ALGORITHMS

When a clustering algorithm is designed, it is neces-
sary to test its performance, and compare it with that
of other methods. In the previous sections we have said
very little about the performance of the algorithms, other
than their computational complexity. Indeed, the issue
of testing algorithms has received very little attention
in the literature on graph clustering. This is a serious
limit of the field. Because of that, it is still impossible to
state which method (or subset of methods) is the most
reliable in applications, and people rely blindly on some
algorithms instead of others for reasons that have noth-
ing to do with the actual performance of the algorithms,
like. e.g. popularity (of the method or of its inventor).
This lack of control is also the main reason for the pro-
liferation of graph clustering techniques in the last few
years. Virtually in any paper, where a new method is
introduced, the part about testing consists in applying
the method to a small set of simple benchmark graphs,
whose cluster structure is fairly easy to recover. Because
of that, the freedom in the design of a clustering algo-
rithm is basically infinite, whereas it is not clear what a
new procedure is adding to the field, if anything.

In this section we discuss at length the issue of testing.
First, we describe the fundamental ingredients of any
testing procedure, i.e. benchmark graphs with built-in
community structure, that methods have to identify (Sec-
tion XIV.A). We proceed by reviewing measures to com-
pare graph partitions with each other (Section XIV.B). In
Section XIV.C we present the comparative evaluations of
different methods that have been performed in the liter-
ature. We conclude by addressing the important issue of
the robustness of community structure, i. e. of its stabil-
ity against perturbations, which is closely related to the
problem of defining when partitions are “significant”.

A. Benchmarks

Testing an algorithm essentially means applying it to
a specific problem whose solution is known and com-
pare such solution with that delivered by the algorithm.
In the case of graph clustering, a problem with a well-

www.manaraa.com

62

FIG. 26 Benchmark of Girvan and Newman. The three pictures correspond to zin = 15 (a), zin = 11 (b) and zin = 8 (c).
In (c) the four groups are hardly visible. Reprinted figure with permission from (Guimerà and Amaral, 2005). c©2005 by the
Nature Publishing Group.

defined solution is a graph with a clear community struc-
ture. This concept is not trivial, however. Many cluster-
ing algorithms are based on similar intuitive notions of
what a community is, but different implementations. So
it is crucial that the scientific community agrees on a
set of reliable benchmark graphs. This mostly applies
to computer-generated graphs, where the built-in clus-
ter structure can be arbitrarily designed. In the liter-
ature real networks are used as well, in those cases in
which communities are well defined because of informa-
tion about the system.

We start our survey from computer-generated bench-
marks. A special class of graphs has become quite pop-
ular in the last years. They are generated with the
so-called planted `-partition model (Condon and Karp,
2001). The model partitions a graph with n = g · ` ver-
tices in ` groups with g vertices each. Vertices of the
same group are linked with a probability pin, whereas
vertices of different groups are linked with a probability
pout. Each subgraph corresponding to a group is then
a random graph á la Erdös-Rényi with connection prob-
ability p = pin (Section A.3). The average degree of a
vertex is 〈k〉 = pin(g−1) +poutg(`−1). If pin > pout the
intra-cluster edge density exceeds the inter-cluster edge
density and the graph has a community structure. This
idea is quite intuitive and we have encountered it in sev-
eral occasions in the previous sections. Girvan and New-
man considered a special case of the planted `-partition
model (Girvan and Newman, 2002). They set ` = 4,
g = 32 (so the number of graph vertices is n = 128) and
fixed the average total degree 〈k〉 to 16. This implies
that pin+ 3pout ≈ 1, so the probabilities pin and pout are
not independent parameters. In calculation it is com-
mon to use as parameters zin = pin(g − 1) = 15pin and
zout = poutg(` − 1) = 48pout, indicating the expected
internal and external degree of a vertex, respectively.
These particular graphs have by now gained the sta-

tus of standard benchmarks (Girvan and Newman, 2002)
(Fig. 26). In the first applications of the graphs one as-
sumed that communities are well defined when zout < 8,
corresponding to the situation in which the internal de-
gree exceeds the external degree. However, the thresh-
old zout = zin = 8 implies pin ≈ 1/2 and pout = 1/6,
so it is not the actual threshold of the model, where
pin = pout = 1/4, corresponding to zout ≈ 12. So, one
expects to be able to detect the planted partition up until
zout ≈ 12.

Testing a method against the Girvan-Newman bench-
mark consists in calculating the similarity between the
partitions determined by the method and the natural
partition of the graph in the four equal-sized groups. Sev-
eral measures of partitions’ similarity may be adopted;
we describe them in Section XIV.B. One usually builds
many graph realizations for a particular value of zout and
computes the average similarity between the solutions of
the method and the built-in solution. The procedure is
then iterated for different values of zout. The results are
usually represented in a plot, where the average similar-
ity is drawn as a function of zout. Most algorithms usu-
ally do a good job for small zout and start to fail when
zout approaches 8. Fan et al. (Fan et al., 2007) have
designed a weighted version of the benchmark of Gir-
van and Newman, in that one gives different weights to
edges inside and between communities. One could pick
just two values, one for intra- and the other for inter-
community edges, or uniformly distributed values in two
different ranges. For this benchmark there are then two
parameters that can be varied, zout and the relative im-
portance of the internal and the external weights. Typ-
ically one fixes the topological structure and varies the
weights. This is particularly insightful when zout = 4,
which delivers graphs without topological cluster struc-
ture: in this case, the question whether there are clusters
or not depends entirely on the weights.

www.manaraa.com

63

FIG. 27 A realization of the benchmark graphs by Lancichinetti et al. (Lancichinetti et al., 2008), with 500 vertices. The distri-
butions of the vertex degree and of the community size are both power laws. Such benchmark is a more faithful approximation
of real-world networks with community structure than simpler benchmarks like, e. g. that by Girvan and Newman (Girvan
and Newman, 2002). Reprinted figure with permission from (Lancichinetti et al., 2008). c©2008 by the American Physical
Society.

As we have remarked above, the planted `-partition
model generates mutually interconnected random graphs
á la Erdös-Rényi. Therefore, all vertices have approx-
imately the same degree. Moreover, all communities
have exactly the same size by construction. These two
features are at odds with what is observed in graph
representations of real systems. Degree distributions
are usually skewed, with many vertices with low degree
coexisting with a few vertices with high degree. A
similar heterogeneity is also observed in the distribution
of cluster sizes, as we shall see in Section XV. So, the
planted `-partition model is not a good description of
a real graph with community structure. However, the
model can be modified to account for the heterogeneity
of degrees and community sizes. A modified version of
the model, called Gaussian random partition generator,
was designed by Brandes et al. (Brandes et al., 2003).
Here the cluster sizes have a Gaussian distribution, so
they are not the same, although they do not differ much
from each other. The heterogeneity of the cluster sizes
introduces a heterogeneity in the degree distribution as
well, as the expected degree of a vertex depends on the
number of vertices of its cluster. Still, the variability
of degree and cluster size is not appreciable. Besides,
vertices of the same cluster keep having approximately
the same degree. A better job in this direction has been
recently done by Lancichinetti et al. (Lancichinetti et al.,
2008). They assume that the distributions of degree and
community sizes are power laws, with exponents γ and
β, respectively. Each vertex shares a fraction 1 − µ of

its edges with the other vertices of its community and
a fraction µ with the vertices of the other communities;
0 ≤ µ ≤ 1 is the mixing parameter. The graphs are
built as follows: 1) a sequence of degrees and a sequence
of community sizes obeying the prescribed power-law
distributions are extracted; 2) each vertex is given a
degree of the sequence, as a set of adjacent stubs, that
are randomly attached to stubs of the other vertices, so
to create a graph preserving the degree sequence (on
average); 3) vertices are assigned to communities such
that minimal topological constraints are satisfied; 4)
the internal degree of each vertex v in its community
is adjusted as close as possible to the prescribed value
(1 − µ)kv, kv being the total degree of v, by a series
of rewiring steps, preserving the degree sequence (on
average). Numerical tests show that this procedure has
a complexity O(m), where m is as usual the number of
edges of the graph, so it can be used to create graphs
of sizes spanning several orders of magnitude. Fig. 27
shows an example of a benchmark graph. Recently
the benchmark has been extended to directed and
weighted graphs with overlapping communities (Lanci-
chinetti and Fortunato, 2009). The software to create
the benchmark graphs can be freely downloaded at
http://santo.fortunato.googlepages.com/inthepre
ss2.

A class of benchmark graphs with power law de-
gree distributions had been previously introduced by
Bagrow (Bagrow, 2008). The construction process starts
from a graph with a power-law degree distribution.

www.manaraa.com

64

Bagrow used Barabási-Albert scale free graphs (Barabási
and Albert, 1999). Then, vertices are randomly assigned
to one of four equally-sized communities. Finally, pairs
of edges between two communities are rewired so that
either edge ends up within the same community, with-
out altering the degree sequence (on average). This is
straightforward: suppose that the edges join the vertex
pairs a1, b1 and a2, b2, where a1, a2 belong to community
A and b1, b2 to community B. It the edges are replaced
by a1-a2 and b1-b2 (provided they do not exist already),
all vertices keep their degrees. With this rewiring pro-
cedure one can arbitrarily vary the edge density within
and, accordingly, between clusters. In this class of bench-
marks, however, communities are all of the same size by
construction, although one can in principle relax this con-
dition.

A (seemingly) different benchmark is represented by
the class of relaxed caveman graphs, which were origi-
nally introduced to explain the clustering properties of
social networks (Watts, 2003). The starting point is
a set of disconnected cliques. With some probability
edges are rewired to link different cliques. Such model
graphs are interesting as they are smooth variations of
the ideal graph with “perfect” communities, i.e. discon-
nected cliques. On the other hand the model is equivalent
to the planted `-partition model, where pin = 1− p and
pout is proportional to p, with coefficient depending on
the size of the clusters.

Benchmark graphs have also been introduced to deal
with special types of graphs and/or cluster structures.
For instance, Arenas et al. (Arenas et al., 2006) have
introduced a class of benchmark graphs with embedded
hierarchical structure, which extend the class of graphs
by Girvan and Newman. Here there are 256 vertices and
two hierarchical levels, corresponding to a partition in 16
groups (microcommunities) with 16 vertices and a par-
tition in 4 larger groups of 64 vertices (macrocommu-
nities), comprising each 4 of the smaller groups. The
edge densities within and between the clusters are indi-
cated by three parameters zin1 , zin2 and zout: zin1 is
the expected internal degree of a vertex within its micro-
community; zin2 is the expected number of edges that the
vertex shares with the vertices of the other microcommu-
nities within its macrocommunity; zout is the expected
number of edges connecting the vertex with vertices of
the other three macrocommunities. The average degree
〈k〉 = zin1 + zin2 + zout of a vertex is fixed to 18. Fig. 7
shows an example of hierarchical graph constructed based
on the same principle, with 512 vertices and an average
degree of 32.

Guimerà et al. (Guimerà et al., 2007) have proposed
a model of bipartite graphs with built-in communities.
They considered a bipartite graph of actors and teams,
here we describe how to build the benchmarks for general
bipartite graphs. One starts from a bipartite graph whose
vertex classes A and B are partitioned into nc groups,
CAi and CBi (i = 1, 2, ..., nc). Each cluster Ci comprises all
vertices of the subgroups CAi and CBi , respectively. With

probability p edges are placed between vertices of sub-
groups CAi and CBi (i = 1, 2, ..., nc), i.e. within clusters.
With probability 1−p, edges are placed between vertices
of subgroups CAi and CBj , where i and j are chosen at ran-
dom, so they can be equal or different. By construction,
a non-zero value of the probability p indicates a prefer-
ence by vertices to share links with vertices of the same
cluster, i.e. for p > 0 the graph has a built-in community
structure. For p = 1 there would be edges only within
clusters, i. e. the graph has a perfect cluster structure.

Finally, Sawardecker et al. introduced a general
model, that accounts for the possibility that clusters over-
lap (Sawardecker et al., 2009). The model is based on the
reasonable assumption that the probability pij that two
vertices are connected by an edge grows with the number
n0 of communities both vertices belong to. For vertices
in different clusters, pij = p0, if they are in the same
cluster (and only in that one) pij = p1, if they belong
to the same two clusters pij = p2, etc.. By hypothesis,
p0 < p1 ≤ p2 ≤ p3.... The planted `-partition model is
recovered when p1 = p2 = p3....

As we have seen, nearly all existing benchmark graphs
are inspired by the planted `-partition model, to some
extent. However, the model needs to be refined to pro-
vide a good description of real graphs with community
structure. The hypothesis that the linking probabilities
of each vertex with the vertices of its community or of
the other communities are constant is not realistic. It is
more plausible that each pair of vertices i and j has its
own linking probability pij , and that such probabilities
are correlated for vertices in the same cluster.

Tests on real networks usually focus on a limited num-
ber of examples, for which one has precise information
about the vertices and their properties.

In Section II we have introduced two popular real net-
works with known community structure, i. e. the social
network of Zachary’s karate club and the social network
of bottlenose dolphins living in Doubtful Sound (New
Zealand), studied by Lusseau. Here, the question is
whether the actual separation in two social groups could
be predicted from the graph topology. Zachary’s karate
club is by far the most investigated system. Several algo-
rithms are actually able to identify the two classes, mod-
ulo a few intermediate vertices, which may be misclassi-
fied. Other methods are less successful: for instance, the
maximum of Newman-Girvan modularity corresponds to
a split of the network in four groups (Donetti and Muñoz,
2004; Duch and Arenas, 2005). Another well known ex-
ample is the network of American college football teams,
derived by Girvan and Newman (Girvan and Newman,
2002). There are 115 vertices, representing the teams,
and two vertices are connected if their teams play against
each other. The teams are divided into 12 conferences.
Games between teams in the same conference are more
frequent than games between teams of different confer-
ences, so one has a natural partition where the commu-
nities correspond to the conferences.

When dealing with real networks, it is useful to re-

www.manaraa.com

65

solve their community structure with different clustering
techniques, to cross-check the results and make sure that
they are consistent with each other, as in some cases the
answer may strongly depend on the specific algorithm
adopted. However, one has to keep in mind that there
is no guarantee that “reasonable” communities, defined
on the basis of non-structural information, must coincide
with those detected by methods based only on the graph
structure.

B. Comparing partitions: measures

Checking the performance of an algorithm involves
defining a criterion to establish how “similar” the par-
tition delivered by the algorithm is to the partition one
wishes to recover. Several measures for the similarity of
partitions exist. In this section we present and discuss
the most popular measures. A thorough introduction of
similarity measures for graph partitions has been given
by Meilă (Meilă, 2007) and we will follow it closely.

Let us consider two generic partitions X =
(X1, X2, ..., XnX

) and Y = (Y1, Y2, ..., YnY
) of a graph

G, with nX and nY clusters, respectively. We indicate
with n the number of graph vertices, with nXi and nYj
the number of vertices in clusters Xi and Yj and with
Nij the number of vertices shared by clusters Xi and Yj :
Nij = |Xi

⋂
Yj |.

In the first tests using the benchmark graphs by Girvan
and Newman (Section XIV.A) scholars used a measure
proposed by Girvan and Newman themselves, the frac-
tion of correctly classified vertices. A vertex is correctly
classified if it is in the same cluster with at least half of
its “natural” partners. If the partition found by the al-
gorithm has clusters given by the merging of two or more
natural groups, all vertices of the cluster are considered
incorrectly classified. The number of correctly classified
vertices is then divided by the total size of the graph,
to yield a number between 0 and 1. The recipe to label
vertices as correctly or incorrectly classified is somewhat
arbitrary, though.

Apart from the fraction of correctly classified vertices,
which is somewhat ad hoc and distinguishes the roles of
the natural partition and of the algorithm’s partition,
most similarity measures can be divided in three cate-
gories: measures based on pair counting, cluster match-
ing and information theory.

Measures based on pair counting depend on the num-
ber of pairs of vertices which are classified in the same
(different) clusters in the two partitions. In particular
a11 indicates the number of pairs of vertices which are
in the same community in both partitions, a01 (a10) the
number of pairs of elements which are put in the same
community in X (Y) and in different communities in Y
(X) and a00 the number of pairs of vertices that are in
different communities in both partitions. Wallace (Wal-

lace, 1983) proposed the two indices

WI =
a11∑

k n
X
k (nXk − 1)/2

; WII =
a11∑

k n
Y
k (nYk − 1)/2

.

(83)
WI and WII represent the probability that vertex pairs
in the same cluster of X are also in the same cluster for
Y, and viceversa. These indices are asymmetrical, as the
role of the two partitions is not the same. Fowlkes and
Mallows (Fowlkes and Mallows, 1983) suggested to use
the geometric mean of WI and WII , which is symmetric.

The Rand index (Rand, 1971) is the ratio of the number
of vertex pairs correctly classified in both partitions (i.e.
either in the same or in different clusters), by the total
number of pairs

R(X ,Y) =
a11 + a00

a11 + a01 + a10 + a00
. (84)

A measure equivalent to the Rand index is the Mirkin
metric (Mirkin, 1996)

M(X ,Y) = 2(a01 + a10) = n(n− 1)[1−R(X ,Y)]. (85)

The Jaccard index is the ratio of the number of vertex
pairs classified in the same cluster in both partitions, by
the number of vertex pairs which are classified in the
same cluster in at least one partition, i.e.

J(X ,Y) =
a11

a11 + a01 + a10
. (86)

Adjusted versions of both the Rand and the Jaccard in-
dex exist, in that a null model is introduced, correspond-
ing to the hypothesis of independence of the two parti-
tions (Meilă, 2007). The null model expectation value
of the measure is subtracted from the unadjusted ver-
sion, and the result is normalized by the range of this
difference, yielding 1 for identical partitions and 0 as ex-
pected value for independent partitions (negative values
are possible as well). Unadjusted indices have the draw-
back that they are not local, i.e. the result depends on
how the whole graph is partitioned, even when the par-
titions differ only in a small region of the graph.

Similarity measures based on cluster matching aim at
finding the largest overlaps between pairs of clusters of
different partitions. For instance, the classification error
H(X ,Y) is defined as (Meilă and Heckerman, 2001)

H(X ,Y) = 1− 1
n

max
π

nX∑
k=1

nkπ(k), (87)

where π is an injective mapping from the cluster indices
of partition Y to the cluster indices of partition X . The
maximum is taken over all possible injections {π}. In
this way one recovers the maximum overlap between the
clusters of the two partitions. An alternative measure
is the normalized Van Dongen metric, defined as (van
Dongen, 2000b)

D(X ,Y) = 1− 1
2n

[
nX∑
k=1

max
k′

nkk′ +
nY∑
k′=1

max
k

nkk′

]
. (88)

www.manaraa.com

66

A common problem of this type of measures is that some
clusters may not be taken into account, if their overlap
with clusters of the other partition is not large enough.
Therefore if we compute the similarity between two parti-
tions X and X ′ and partition Y, with X and X ′ differing
from each other by a different subdivision of parts of the
graph that are not used to compute the measure, one
would obtain the same score.

The third class of similarity measures is based on re-
formulating the problem of comparing partitions as a
problem of message decoding within the framework of
information theory (Mackay, 2003). The idea is that, if
two partitions are similar, one needs very little informa-
tion to infer one partition given the other. This extra
information can be used as a measure of dissimilarity.
To evaluate the Shannon information content (Mackay,
2003) of a partition, one starts by considering the com-
munity assignements {xi} and {yi}, where xi and yi in-
dicate the cluster labels of vertex i in partition X and
Y, respectively. One assumes that the labels x and y
are values of two random variables X and Y , with joint
distribution P (x, y) = P (X = x, Y = y) = nxy/n,
which implies that P (x) = P (X = x) = nXx /n and
P (y) = P (Y = y) = nYy /n. The mutual information
I(X,Y) of two random variables has been previously
defined (Eq. 68), and can be applied as well to par-
titions X and Y, since they are described by random
variables. Actually I(X,Y) = H(X) − H(X|Y), where
H(X) = −

∑
x P (x) logP (x) is the Shannon entropy of

X and H(X|Y) = −
∑
x,y P (x, y) logP (x|y) is the con-

ditional entropy of X given Y . The mutual information
is not ideal as a similarity measure: in fact, given a par-
tition X , all partitions derived from X by further par-
titioning (some of) its clusters would all have the same
mutual information with X , even though they could be
very different from each other. In this case the mutual in-
formation would simply equal the entropy H(X), because
the conditional entropy would be systematically zero. To
avoid that, Danon et al. adopted the normalized mutual
information (Danon et al., 2005)

Inorm(X ,Y) =
2I(X,Y)

H(X) +H(Y)
, (89)

which is currently very often used in tests of graph clus-
tering algorithms. The normalized mutual information
equals 1 if the partitions are identical, whereas it has
an expected value of 0 if the partitions are independent.
The measure, defined for standard partitions, in which
each vertex belongs to only one cluster, has been recently
extended to the case of overlapping clusters by Lanci-
chinetti et al. (Lancichinetti et al., 2009). The extension
is not straightforward as the community assignments of
a partition are now specified by a vectorial random vari-
able, since each vertex may belong to more clusters si-
multaneously.

Meilă (Meilă, 2007) introduced the variation of infor-
mation

V (X ,Y) = H(X|Y) +H(Y |X), (90)

N
G

G
N

FL
M N
F

D
M

D
M

N ZL LP R
B D
A

SA

Method

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 n
od

es
 c

or
re

ct
ly

 id
en

tif
ie

d

z out = 6

z out = 7

z out = 8

FIG. 28 Relative performances of the algorithms listed in
Table I on the Girvan-Newman benchmark, for three values
of the expected average external degree zout. Reprinted figure
with permission from (Danon et al., 2005). c©2005 by IOP
Publishing and SISSA.

which has some desirable properties with respect to the
normalized mutual information and other measures. In
particular, it defines a metric in the space of partitions
as it has the properties of distance. It is also a local
measure, i.e. the similarity of partitions differing only in
a small portion of a graph depends on the differences of
the clusters in that region, and not on the partition of the
rest of the graph. The maximum value of the variation
of information is log n, so similarity values for partitions
of graphs with different size cannot be compared with
each other. For meaningful comparisons one could divide
V (X ,Y) by log n, as suggested by Karrer et al. (Karrer
et al., 2008).

A concept related to similarity is that of distance,
which indicates basically how many operations need to
be performed in order to transform a partition to an-
other. Gustafsson et al. defined two distance measures
for partitions (Gustafsson et al., 2006). They are both
based on the concept of meet of two partitions, which is
defined as

M =
nA⋃
i=1

nB⋃
j=1

[
Xi

⋂
Yj

]
. (91)

The distance measures are mmoved and mdiv. In both
cases they are determined by summing the distances of
X and Y from the meet M. For mmoved the distance of
X (Y) from the meet is the minimum number of elements
that must be moved between X and Y so that X (Y) and
M coincide (Gusfield, 2002). For mdiv the distance of X
(Y) from the meet is the minimum number of divisions
that must be done in X (Y) so that X (Y) and M coin-

www.manaraa.com

67

cide (Stanley, 1997). Such distance measures can easily
be transformed in similarity measures, like

Imoved = 1−mmoved/n, Idiv = 1−mdiv/n. (92)

Identical partitions have zero mutual distance and simi-
larity 1 based on Eqs. 92.

Finally an important problem is how to define the sim-
ilarity between clusters. If two partitions X and Y of a
graph are similar, each cluster of X will be very similar
to one cluster of Y, and viceversa, and it is important
to identify the pairs of corresponding clusters. For in-
stance, if one has information about the time evolution
of a graph, one could monitor the dynamics of single clus-
ters as well, by keeping track of each cluster at different
time steps (Palla et al., 2007). Given clusters Xi and
Yj , their similarity can be defined through the relative
overlap sij

sij =
|Xi

⋂
Yj |

|Xi

⋃
Yj |

. (93)

In this way, looking for the cluster of Y corresponding to
Xi means finding the cluster Yj that maximizes sij . The
index sij can be used to define similarity measures for
partitions as well (Fan et al., 2007; Zhang et al., 2006).
An interesting discussion on the problem of comparing
partitions, along with further definitions of similarity
measures not discussed here, can be found in (Traud
et al., 2008).

C. Comparing algorithms

The first and so far only systematic comparative anal-
ysis of graph clustering techniques has been carried out
by Danon et al. (Danon et al., 2005). They compared
the performances of various algorithms on the benchmark
graphs by Girvan and Newman (Section XIV.A). The al-
gorithms examined are listed in Table I, along with their
complexity. Fig. 28 shows the performance of all algo-
rithms. Instead of showing the whole curves of the sim-
ilarity versus zout (Section XIV.A), which would display
a fuzzy picture with many strongly overlapping curves,
difficult to appreciate, Danon et al. considered three val-
ues for zout (6, 7 and 8), and represented the result for
each algorithm as a group of three columns, indicating
the average value of the similarity between the planted
partition and the partition found by the method for each
of the three zout-values. The similarity was measured
in terms of the fraction of correctly classified vertices
(Section XIV.A). The comparison shows that modular-
ity optimization via simulated annealing (Section VI.A.2)
yields the best results, although it is a rather slow pro-
cedure, that cannot be applied to graphs of size of the
order of 105 vertices or larger.

On the other hand, we have already pointed out that
the benchmark by Girvan and Newman is not a good
representation of real graphs with community structure,

0 0.1 0.2 0.3 0.4 0.5 0.6
0.75

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

<k>=15
<k>=20
<k>=25

0 0.1 0.2 0.3 0.4 0.5 0.6
0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6
Mixing parameter µ

0.84

0.88

0.92

0.96

1

0 0.1 0.2 0.3 0.4 0.5 0.6
Mixing parameter µ

0.84

0.88

0.92

0.96

1

 γ=2, β=1

 γ=2, β=2

 γ=3, β=1 γ=3, β=2

FIG. 29 Performance of modularity optimization, imple-
mented with simulated annealing, on the benchmark graphs
by Lancichinetti et al. (Lancichinetti et al., 2008). The four
panels refer to different choices for the exponents γ and β of
the degree and community size distributions. All graphs have
5000 vertices. Each curve refers to a given value of the aver-
age degree. The similarity of the partition found through
modularity optimization with the planted partition of the
benchmark is not perfect even for very small values of the
mixing parameter µ. This is due to the resolution limit of
modularity optimization (Section VI.C), which induces the
method to artificially merge small clusters. Reprinted figure
with permission from (Lancichinetti et al., 2008). c©2008 by
the American Physical Society.

which are characterized by heterogeneous distribution of
degree and community sizes. In this respect, the class
of graphs designed by Lancichinetti et al. (Lancichinetti
et al., 2008) (Section XIV.A) poses a far more severe test
to clustering techniques. Many methods, for instance,
have problems to detect clusters of very different sizes,
including many methods listed in Table I. In Section VI.C
we have seen that modularity optimization has a res-
olution limit that makes small clusters (small with re-
spect to the graph size) often undetectable. Tests on the
benchmark by Lancichinetti et al. immediately disclose
this problem (Fig. 29), which instead does not occur in
the benchmark by Girvan and Newman. For this rea-
son, we believe that in the future it is necessary to carry
out a careful comparative analysis of community detec-
tion methods on the much more restrictive benchmark
by Lancichinetti et al.

Fan et al. have evaluated the performance of some al-
gorithms to detect communities on weighted graphs (Fan
et al., 2007). The algorithms are: modularity maxi-
mization, carried out with extremal optimization (WEO)
(Section VI.A.3); the Girvan-Newman algorithm (WGN)
(Section V.A); the Potts model algorithm by Reichardt
and Bornholdt (Potts) (Section VIII.A). All these tech-
niques have been originally introduced for unweighted
graphs, but we have shown that they can easily be ex-

www.manaraa.com

68

Author Ref. Label Order

Eckmann & Moses (Eckmann and Moses, 2002) EM O(m〈k2〉)
Zhou & Lipowsky (Zhou and Lipowsky, 2004) ZL O(n3)

Latapy & Pons (Latapy and Pons, 2005) LP O(n3)

Clauset, Newman & Moore (Clauset et al., 2004) NF O(n log2 n)

Newman & Girvan (Newman and Girvan, 2004) NG O(nm2)

Girvan & Newman (Girvan and Newman, 2002) GN O(n2m)

Guimerà et al. (Guimerà and Amaral, 2005; Guimerà et al., 2004) SA parameter dependent

Duch & Arenas (Duch and Arenas, 2005) DA O(n2 logn)

Fortunato, Latora & Marchiori (Fortunato et al., 2004) FLM O(n4)

Radicchi et al. (Radicchi et al., 2004) RCCLP O(n2)

Donetti & Muñoz (Donetti and Muñoz, 2004, 2005) DM/DMN O(n3)

Bagrow & Bollt (Bagrow and Bollt, 2005) BB O(n3)

Capocci et al. (Capocci et al., 2005) CSCC O(n2)

Wu & Huberman (Wu and Huberman, 2004) WH O(n+m)

Palla et al. (Palla et al., 2005) PK O(exp(n))

Reichardt & Bornholdt (Reichardt and Bornholdt, 2004) RB parameter dependent

TABLE I List of the algorithms used in the comparative analysis of Danon et al. (Danon et al., 2005). The first column
indicates the names of the algorithm designers, the second the original reference of the work, the third the symbol used to
indicate the algorithm and the last the computational complexity of the technique. Adapted from (Danon et al., 2005).

tended to weighted graphs. The algorithms were tested
on the weighted version of the benchmark of Girvan
and Newman, that we discussed in Section XIV.A. Edge
weights have only two values: winter for inter-cluster
edges and wintra for intra-cluster edges. Such values are
linked by the relation wintra + winter = 2, so they are
not independent. For testing one uses realizations of the
benchmark with fixed topology (i.e. fixed zout) and vari-
able weights. In Fig. 30 the comparative performance
of the three algorithms is illustrated. The topology of
the benchmark graphs corresponds to zout = 8, i.e. to
graphs in which each vertex has approximately the same
number of neighbors inside and outside its community.
By varying winter from 0 to 2 one goes smoothly from
a situation in which the most of the weight is concen-
trated inside the clusters, to a situation in which instead
the weight is concentrated between the clusters. From
Fig. 30 we see that WEO and Potts are more reliable
methods.

Sawardecker et al. have tested methods to detect
overlapping communities (Sawardecker et al., 2009).
They considered three algorithms: modularity opti-
mization, the Clique Percolation Method (CPM) (Sec-
tion XI.A) and the modularity landscape surveying
method by Sales-Pardo et al.(Sales-Pardo et al., 2007)
(Section XII.B). For testing, Sawardecker et al. defined
a class of benchmark graphs in which the linking prob-
ability between vertices is an increasing function of the
number of clusters the vertices belong to. We have de-
scribed this benchmark in Section XIV.A. It turns out
that the modularity landscape surveying method is able
to identify overlaps between communities, as long as the
fraction of overlapping vertices is small. Curiously, the

CPM, designed to find overlapping communities, has a
poor performance, as the overlapping vertices found by
the algorithm are in general different from the overlap-
ping vertices of the planted partition of the benchmark.
The authors also remark that, if the overlap between
two clusters is not too small, it may be hard (for any
method) to recognize whether the clusters are overlap-
ping or hierarchically organized, i.e. loosely connected
clusters within a large cluster.

We close the section with some general remarks con-
cerning testing. We have seen that a testing procedure
requires two crucial ingredients: benchmark graphs with
built-in community structure and clustering algorithms
that try to recover it. Such two elements are not inde-
pendent, however, as they are both based on the concept
of community. If the underlying notions of community
for the benchmark and the algorithm are very different,
one can hardly expect that the algorithm will do a good
job on the benchmark. Furthermore, there is a third el-
ement, i.e. the quality of a partition. All benchmarks
start from a situation in which communities are clearly
identified, i.e. connected components of the graph, and
introduce some amount of noise, that eventually leads
to a scenario where clusters are hardly or no longer de-
tectable. It is then important to keep track of how the
quality of the natural partition of the benchmark worsens
as the amount of noise increases, in order to distinguish
configurations in which the graphs have a cluster struc-
ture, that an algorithm should then be able to resolve,
from configurations in which the noise prevails and the
natural clusters are not meaningful. Moreover, quality
functions are important to evaluate the performance of
an algorithm on graphs whose community structure is

www.manaraa.com

69

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

 WEO
 GN
 Pottspr

ec
is
io
n

wout(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

wout

 WEO
 GN
 Potts

(b)

FIG. 30 Comparative evaluation of the performances of al-
gorithms to find communities in weighted graphs. Tests are
carried out on a weighted version of the benchmark of Girvan
and Newman. The two plots show how good the algorithms
are in terms of the precision and accuracy with which they
recover the planted partition of the benchmark. Precision in-
dicates how close the values of similarity between the planted
and the model partition are after repeated experiments with
the same set of parameters; accuracy indicates how close the
similarity values are to the ideal result (1) after repeated ex-
periments with the same set of parameters. The similarity
measure adopted here is based on the relative overlap of clus-
ters of Eq. 93. We see that the maximization of modularity
with extremal optimization (WEO) and the Potts model al-
gorithm (Potts) are both precise and accurate as long as the
weight of the inter-cluster edges winter remains lower than
the weight of the intra-cluster edges (winter < 1). Reprinted
figures with permission from (Fan et al., 2007). c©2007 by
Elsevier.

unknown. Quality functions are strongly related to the
concept of community as well, as they are supposed to
evaluate the goodness of the clusters, so they require a
clear quantitative concept of what a cluster is. It is very
important for any testing framework to check for the mu-
tual dependencies between the benchmark, the quality
function used to evaluate partitions, and the clustering
algorithm to be tested. This issue has so far received very
little attention (Delling et al., 2007). Finally, empirical
tests are also very important, as one ultimately wishes to
apply clustering techniques to real graphs. Therefore, it
is crucial to collect more data sets of graphs whose com-
munity structure is known or deducible from information
on the vertices and their edges.

XV. GENERAL PROPERTIES OF REAL CLUSTERS

What are the general properties of partitions and clus-
ters of real graphs? In many papers on graph clustering
applications to real systems are presented. In spite of the
variety of clustering methods that one could employ, in
many cases partitions derived from different techniques
are rather similar to each other, so the general properties
of clusters do not depend much on the particular algo-
rithm used. The analysis of clusters and their properties
delivers a mesoscopic description of the graph, where the
communities, and not the vertices, are the elementary
units of the topology. The term mesoscopic is used be-
cause the relevant scale here lies between the scale of the
vertices and that of the full graph. Here we discuss sep-
arately results on static communities, i. e. clusters of
individual system configurations, and results on dynamic
communities, i. e. clusters of systems evolving in time.

A. Static communities

One of the first issues addressed was whether the com-
munities of a graph are usually about of the same size or
whether the community sizes have some special distribu-
tion. Most clustering techniques consistently find skewed
distributions of community sizes, with a tail described
with good approximation by a power law (at least, a
sizeable portion of the curve) with exponents in the range
between 1 and 3 (Clauset et al., 2004; Danon et al., 2007;
Newman, 2004a; Palla et al., 2005; Radicchi et al., 2004).
So, there seems to be no characteristic size for a commu-
nity: small communities usually coexist with large ones.
As an example, Fig. 31 shows the cumulative distribution
of community sizes for a recommendation network of the
online vendor Amazon.com. Vertices are products and
there is a connection between item A and B is B was
frequently purchased by buyers of A. Recall that the
cumulative distribution is the integral of the probability
distribution: if the cumulative distribution is a power law
s−α, the probability distribution is also a power law with
exponent α+ 1.

www.manaraa.com

70

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

community size

1−
cd

f,
P

(k
>

x)
amazon0308
guide, α=−2.045

FIG. 31 Cumulative distribution of community sizes for the
Amazon purchasing network. The partition is derived by
greedy modularity optimization. Reprinted figure with per-
mission from (Clauset et al., 2004). c©2004 by the Americal
Physical Society.

If communities are overlapping, one can explore other
statistical properties, like the distributions of the over-
laps and of the vertex memberships. The overlap is de-
fined as the number of vertices shared by each pair of
overlapping clusters; the membership of a vertex is the
number of communities including the vertex. Both dis-
tributions turn out to be skewed, so there seem to be no
characteristic values for the overlap and the membership.
Moreover, one could derive a network, where the commu-
nities are the vertices and pairs of vertices are connected
if their corresponding communities overlap (Palla et al.,
2005). Such networks seem to have some special proper-
ties. For instance, the degree distribution is a particular
function, with an initial exponential decay followed by
a slower power law decay19. We stress that the above
results have been obtained with the Clique Percolation
Method by Palla et al. (Section XI.A) and it is not clear
whether other techniques would confirm them or not. In
a recent analysis it has been shown that the degree dis-
tribution of the network of communities can be repro-
duced by assuming that the graph grows according to a
simple preferential attachment mechanism, where com-
munities with large degree have an enhanced chance to
interact/overlap with new communities (Pollner et al.,
2006).

If the community structure of a graph is known, it
is possible to classify vertices according to their roles

19 This holds for the networks considered by Palla et al. (Palla et al.,
2005) like, e. g., the word association network (Section II) and a
coauthorship network of physicists. There is no a priori reason
to believe that this result is general.

within their community, which may allow to infer individ-
ual properties of the vertices. A promising classification
has been proposed by Guimerà and Amaral (Guimerà
and Amaral, 2005; Guimerà and Amaral, 2005). The
role of a vertex depends on the values of two indices, the
within-module degree and the participation ratio (though
other variables may be chosen, in principle). The within-
module degree zi of vertex i is defined as

zi =
κi − κ̄si

σκsi

, (94)

where κi is the internal degree of i in its cluster si, κ̄si
and

σκsi
the average and standard deviation of the internal

degrees for all vertices of cluster si. The within-module
degree is then defined as the z-score of the internal degree
κi. Large values of z indicate that the vertex has many
more neighbors within its community than most other
vertices of the community. Vertices with z ≥ 2.5 are
classified as hubs, if z < 2.5 they are non-hubs. The
participation ratio Pi of vertex i is defined as

Pi = 1−
nc∑
s=1

(
κis
ki

)2

. (95)

Here κis is the internal degree of i in cluster s, ki the
degree of i. Values of P close to 1 indicate that the
neighbors of the vertex are uniformly distributed among
all clusters; if all neighbors are within the cluster of the
vertex, instead, P = 0. Based on the values of the
pair (z, P), Guimerà and Amaral distinguished seven
roles for the vertices. Non-hub vertices can be ultra-
peripheral (P ≈ 0), peripheral (P < 0.625), connectors
(0.625 < P < 0.8) and kinless vertices (P > 0.8). Hub
vertices are classified in provincial hubs (P <∼ 0.3),
connector hubs (0.3 < P < 0.75) and kinless hubs
(P > 0.75). The regions of the z − P plane correspond-
ing to the seven roles are highlighted in Fig. 32. We
stress that the actual boundaries of the regions can be
chosen rather arbitrarily. On graphs without commu-
nity structure, like Erdös-Rényi (Erdös and Rényi, 1959)
random graphs and Barabási-Albert (Barabási and Al-
bert, 1999) graphs (Section A.3), non-hubs are mostly
kinless vertices. In addition, if there are hubs, like in
Barabási-Albert graphs, they are kinless hubs. Kinless
hubs (non-hubs) vertices have less than half (one third) of
their neighbors inside any cluster, so they are not clearly
associated to a cluster. On real graphs, the topologi-
cal roles can be correlated to functions of vertices: in
metabolic networks, for instance, connector hubs, which
share most edges with vertices of other clusters than their
own, are often metabolites which are more conserved
across species than other metabolites, i.e. they have an
evolutionary advantage (Guimerà and Amaral, 2005).

B. Dynamic communities

The analysis of dynamic communities is still in its in-
fancy. Studies in this direction have been mostly hin-

www.manaraa.com

71

FIG. 32 Regions of the z − P plane defining the roles of
vertices in the modular structure of a graph, according to
the scheme of Guimerà and Amaral (Guimerà and Amaral,
2005; Guimerà and Amaral, 2005). Reprinted figure with per-
mission from (Guimerà and Amaral, 2005). c©2005 by the
Nature Publishing Group.

dered by the fact that the problem of graph clustering
is already controversial on single graph realizations, so it
is understandable that most efforts still concentrate on
the “static” version of the problem. Another difficulty is
represented by the dearth of time-stamped data on real
graphs. Recently, several data sets have become avail-
able, enabling to monitor the evolution in time of real
systems. So it has become possible to investigate how
communities form, evolve and die. The main phenomena
occurring in the lifetime of a community are (Fig. 33):
birth, growth, contraction, merger with other communi-
ties, split, death.

The first study was carried out by Hopcroft et
al. (Hopcroft et al., 2004), who analyzed several snap-
shots of the citation graph induced by the NEC CiteSeer
Database (Giles et al., 1998). The snapshots cover the
period from 1990 to 2001. Communities are detected
by means of (agglomerative) hierarchical clustering (Sec-
tion IV.B), where the similarity between vertices is the
cosine similarity of the vectors describing the correspond-
ing papers, a well known measure used in information
retrieval (Baeza-Yates and Ribeiro-Neto, 1999). In each
snapshot Hopcroft et al. identified the natural communi-
ties, defined as those communities of the hierarchical tree
that are only slightly affected by minor perturbations of
the graph, where the perturbation consists in removing
a small fraction of the vertices (and their edges). Such
natural communities remind us of the stable communi-

t+1t

t t+1

t+1t t t+1

t t+1

t t+1

growth

merging

birth death

splitting

contraction

FIG. 33 Possible scenarios in the evolution of communities.
Reprinted figure with permission from (Palla et al., 2007).
c©2007 by the Nature Publishing Group.

ties we have seen in Section XIII. Hopcroft et al. found
the best matching natural communities across different
snapshots, and in this way they could follow the history
of communities. In particular they could see the emer-
gence of new communities, corresponding to new research
topics. The main drawback of the method comes from
the use of hierarchical clustering, which is unable to sort
out meaningful communities out of the hierarchical tree,
which includes many different partitions of the graph.

More recently, Palla et al. performed the first system-
atic analysis of dynamic communities (Palla et al., 2007).
They studied two social systems: 1) a graph of phone
calls between customers of a mobile phone company in
a year’s time; 2) a collaboration network between scien-
tists, describing the coauthorship of papers in condensed
matter physics from the electronic e-print archive (cond-
mat) maintained by Cornell University Library, spanning
a period of 142 months. The first problem is identifying
the image of a community C(t+1) at time t+1 among the
communities of the graph at time t. A simple criterion,
used in other works, is to measure the relative overlap
(Eq. 93) of C(t + 1) with all communities at time t, and
pick the community which has the largest overlap with
C(t+ 1). This is intuitive, but in many cases it may miss
the actual evolution of the community. For instance, if
C(t) at time t + 1 grows considerably and overlaps with
another community B(t+ 1) (which at the previous time
step was disjoint from C(t)), the relative overlap between
C(t+ 1) and B(t) may be larger than the relative overlap
between C(t + 1) and C(t). It is not clear whether there
is a general prescription to avoid this problem. Palla et
al. solved it by exploiting the features of the Clique Per-
colation Method (CPM) (Section XI.A), that they used
to detect communities. The idea is to analyze the graph
G(t, t + 1), obtained by merging the two snapshots G(t)
and G(t+1) of the evolving graph, at times t and t+1 (i.
e., by putting together all their vertices and edges). Any

www.manaraa.com

72

CPM community of G(t) and G(t + 1) does not get lost,
as it is included within one of the CPM communities of
G(t, t + 1). For each CPM community Vk of G(t, t + 1),
one finds the CPM communities {Ctk} and {Ct+1

k } (of G(t)
and G(t+1), respectively) which are contained in Vk. The
image of any community in {Ct+1

k } at time t is the com-
munity of {Ctk} that has the largest relative overlap with
it.

The age τ of a community is the time since its birth.
It turns out that the age of a community is positively
correlated with its size s(τ), i. e. that older communities
are also larger (on average). The time evolution of a
community C can be described by means of the relative
overlap C(t) between states of the community separated
by a time t:

C(t) =
|C(t0)

⋂
C(t0 + t)|

|C(t0)
⋃
C(t0 + t)|

. (96)

One finds that, in both data sets, C(t) decays faster for
larger communities, so the composition of large commu-
nities is rather variable in time, whether small commu-
nities are essentially static. Another important question
is whether it is possible to predict the evolution of com-
munities from information on their structure or on their
vertices. In Fig. 34a the probability pl that a vertex will
leave the community in the next step of the evolution is
plotted as a function of the relative external strength of
the vertex, indicating how much of the vertex strength
lies on edges connecting it to vertices outside its com-
munity. The plot indicates that there is a clear positive
correlation: vertices which are only loosely connected to
vertices of their community have a higher chance (on av-
erage) to leave the community than vertices which are
more “committed” towards the other community mem-
bers. The same principle holds at the community level
too. Fig. 34b shows that the probability pd that a com-
munity will disintegrate in the next time step is posi-
tively correlated with the relative external strength of
the community. Finally, Palla et al. have found that the
probability for two communities to merge increases with
the community sizes much more than what one expects
from the size distribution, which is consistent with the
faster dynamics observed for large communities. Palla et
al. analyzed two different real systems, a network of mo-
bile phone communications and a coauthorship network,
to be able to infer general properties of community evo-
lution. However, communities were only found with the
CPM, so their results need to be cross-checked by em-
ploying other clustering techniques.

Dynamic communities can be as well detected with
methods of information compression, such as some of
those we have seen in Section IX.B. Sun et al. (Sun
et al., 2007) applied the Minimum Description Length
(MDL) principle (Grünwald et al., 2005; Rissanen, 1978)
to find the minimum encoding cost for the description
of a time sequence of graphs and their partitions in
communities. The method is quite similar to that suc-
cessively developed by Rosvall and Bergstrom (Rosvall

τ n

wout win wout+/()

τ∗

WinWout Wout/(+)

p l

inwoutw outw(+)/

dp

outW Win outW/(+)

a)

b)

co−authorship
phone−call

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 10

 8

 12

 14

 16

 6

 4

 2

 0

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1 0.3 0.1

phone−call
co−authorship

 0.08

 0.07

 0.06

 0.05

 0.04

 0.03

 0.02

 0.01

 0
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.2

 0.15

 0.05

 0

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 34 Relation between structural features and evolution
of a community. a) Relation between the probability that
a vertex will abandon the community in the next time step
and its relative external strength. b) Relation between the
probability of disintegration of a community in the next time
step and its relative external strength. Reprinted figure with
permission from (Palla et al., 2007). c©2007 by the Nature
Publishing Group.

and Bergstrom, 2007), which is however defined only for
static graphs (Section IX.B). Here one considers bipartite
graphs evolving in time. The time sequence of graphs can
be separated in segments, each containing some number
of consecutive snapshots of the system. The graphs of
each segment are supposed to have the same modular
structure (i. e. they represent the same phase in the
history of the system), so they are characterized by the
same partition of the two vertex classes. For each graph
segment it is possible to define an encoding cost, which
combines the encoding cost of the partition of the graphs
of the segment with the entropy of compression of the seg-
ment in the subgraph segments induced by the partition.
The total encoding cost C of the graph series is given
by the sum of the encoding costs of its segments. Mini-
mizing C enables one to find not only the most modular

www.manaraa.com

73

partition for each graph segment (high modularity20 cor-
responds to low encoding costs for a partition), but also
the most compact subdivision of the snapshots into seg-
ments, such that graphs in the same segment are strongly
correlated with each other. The latter feature allows to
identify change points in the time history of the system,
i. e. short periods in which the dynamics produces big
changes in the graph structure (corresponding to, e.g.,
extreme events). The minimization of C is NP-hard,
so the authors propose an approximation method called
GraphScope, which consists of two steps: first, one looks
for the best partition of each graph segment; second, one
looks for the best division in segments. In both cases
the “best” result corresponds to the minimal encoding
cost. The best partition within a graph segment is found
by local search. GraphScope has the big advantage not
to require any input, like the number and sizes of the
clusters. It is also suitable to operate in a streaming en-
vironment, in which new graph configurations are added
in time, following the evolution of the system: the com-
putational complexity required to process a snapshot (on
average) is stable over time. Tests on real evolving data
sets show that GraphScope is able to find meaningful
communities and change points.

Since keeping track of communities in different time
steps is not a trivial problem, as we have seen above, it
is perhaps easier to adopt a vertex-centric perspective,
in which one monitors the community of a given vertex
at different times. For any method, given a vertex i and
a time t, the community to which i belongs at time t is
well defined. Fenn et al. (Fenn et al., 2008) used the mul-
tiresolution method by Reichardt et al. (Reichardt and
Bornholdt, 2006a) (Section VI.B) and investigated a fully
connected graph with time-dependent weights, represent-
ing the correlations of time series of hourly exchange rate
returns. The resolution parameter γ is fixed to the value
that occurs in most stability plateaus of the system at dif-
ferent time steps. Motivated by the work of Guimerà and
Amaral (Guimerà and Amaral, 2005) (Section XV.A),
Fenn et al. identify the role of individual vertices in their
community through the pair (zin, zb), where zin is the
z-score of the internal strength (weighted degree, Sec-
tion A.1), defined in Eq. 94, and zb the z-score of the
site betweenness, defined by replacing the internal degree
with the site betweenness of Freeman (Freeman, 1977) in
Eq. 94. We remind that the site betweenness is a measure
of the number of shortest paths running through a ver-
tex. The variable zb expresses the importance of a vertex
in processes of information diffusion with respect to the
other members of its community. Another important is-
sue regards the persistence of communities in time, i. e.
how stable they are during the evolution. As a measure

20 We stress that here by modularity we mean the feature of a graph
having community structure, not the modularity of Newman and
Girvan.

of persistence, Fenn et al. introduced a vertex-centric
version of the relative overlap of Eq. 96

ati(τ) =
|Ci(t)

⋂
Ci(t+ τ)|

|Ci(t)
⋃
Ci(t+ τ)|

, (97)

where i is the vertex and Ci(t), Ci(t+τ) the communities
of i at times t, t + τ , respectively. The decay of ati(τ)
depends on the type of vertex. In particular, if the ver-
tex is strongly connected to its community (zin large),
ati(τ) decays quite slowly, meaning that it tends to stay
attached to a stable core of vertices.

XVI. APPLICATIONS ON REAL-WORLD NETWORKS

The ultimate goal of clustering algorithms is try-
ing to infer properties of and relationships between
vertices, that are not available from direct observa-
tion/measurement. If the scientific community agrees
on a set of reliable techniques, one could then proceed
with careful investigations of systems in various domains.
So far, most works in the literature on graph clustering
focused on the development of new algorithms, and ap-
plications were limited to those few benchmark graphs
that one typically uses for testing (Section XIV.A). Still,
there are also applications aiming at understanding real
systems. Some results have been actually mentioned in
the previous sections. This section is supposed to give
a flavor of what can be done by using clustering algo-
rithms. Therefore, the list of works presented here is by
no means exhaustive. Most studies focus on biological
and social networks. We mention a few applications to
other types of networks as well.

A. Biological networks

The recent abundance of genomic data has allowed us
to explore the cell at an unprecedented depth. A wealth
of information is available on interactions involving pro-
teins and genes, metabolic processes, etc. In order to
study cellular systems, the graph representation is regu-
larly used. Protein-protein interaction networks (PIN),
gene regulatory networks (GRN) and metabolic networks
(MN) are meanwhile standard objects of investigation in
biology and bioinformatics (Junker and Schreiber, 2008).

Biological networks are characterized by a remarkable
modular organization, reflecting functional associations
between their components. For instance, proteins tend
to be associated in two types of cellular modules: protein
complexes and functional modules. A protein complex is
a group of proteins that mutually interact at the same
time and space, forming a sort of physical object. Exam-
ples are transcription factor complexes, protein transport
and export complexes, etc. Functional modules instead
are groups of proteins taking place in the same cellu-
lar process, even if the interactions may happen at dif-
ferent times and places. Examples are the CDK/cyclin

www.manaraa.com

74

module, responsible for cell-cycle progression, the yeast
pheromone response pathway, etc. Identifying cellular
modules is fundamental to uncover the organization and
dynamics of cell functions. However, the information on
cell units (e. g. proteins, genes) and their interactions is
often incomplete, or even incorrect, due to noise in the
data produced by the experiments. Therefore, inferring
modules from the topology of cellular networks enables
one to restrict the set of possible scenarios and can be a
safe guide for future experiments.

Rives and Galitski (Rives and Galitski, 2003) stud-
ied the modular organization of a subset of the PIN
of the yeast (Saccharomyces cerevisiae), consisting of
the (signaling) proteins involved in the processes lead-
ing the microorganism to a filamentous form. The clus-
ters were detected with a hierarchical clustering tech-
nique. Proteins mostly interacting with members of their
own cluster are often essential proteins; edges between
modules are important points of communication. Spirin
and Mirny (Spirin and Mirny, 2003) identified protein
complexes and functional modules in yeast with different
techniques: clique detection, superparamagnetic cluster-
ing (Blatt et al., 1996) and optimization of cluster edge
density. They estimated the statistical significance of the
clusters by computing the p-values of seeing those clus-
ters in random graphs with the same expected degree
sequence as the original network. From the known func-
tional annotations of yeast genes one can see that the
modules usually group proteins with the same or con-
sistent biological functions. Indeed, in many cases, the
modules exactly coincide with known protein complexes.
The results appear robust if noise is introduced in the
system, to simulate the noise present in the experimental
data. Functional modules in yeast were also found by
Chen and Yuan (Chen and Yuan, 2006), who applied the
algorithm by Girvan and Newman with a modified defi-
nition of edge betweenness (Section V.A). The standard
Girvan-Newman algorithm has proved to be reliable to
detect functional modules in PINs (Dunn et al., 2005).
The novelty of the work by Chen and Yuan is its focus
on weighted PINs, where the weights come from infor-
mation derived through microarray expression profiles.
Weights add information about the system and should
lead to a more reliable modular structure. By knocking
out genes in the same structural cluster similar pheno-
types appeared, suggesting that the genes have similar
biological roles. Moreover, the clusters often contained
known protein complexes, either entirely or to a large
extent. Finally, Chen and Yuan were able to make pre-
dictions of the unknown function of some genes, based
on the structural module they belong to: gene function
prediction is the most promising outcome deriving from
the application of clustering techniques to PINs. Farutin
et al. (Farutin et al., 2006) have adopted a local concept
of community, and derived a hierarchical decomposition
of PINs, in that the modules identified at some level be-
come the vertices of a network at the higher level. Com-
munities are overlapping, to account for the fact that

proteins (and whole modules) may have diverse biologi-
cal functions. High level structures detected in a human
PIN correspond to general biological concepts like signal
transduction, regulation of gene expression, intercellular
communication. Sen et al. (Sen et al., 2006) identified
protein clusters for yeast from the eigenvectors of the
Laplacian matrix (Section A.2), computed via Singular
Value Decomposition.

Metabolic networks have also been extensively investi-
gated. We have already discussed the “functional cartog-
raphy” designed by Guimerà and Amaral (Guimerà and
Amaral, 2005; Guimerà and Amaral, 2005), which applies
to general types of networks, not necessarily metabolic.
A hierarchical decomposition of metabolic networks has
been derived by Holme et al. (Holme et al., 2003), by
using a hierarchical clustering technique inspired by the
algorithm by Girvan and Newman (Section V.A). Here,
vertices are removed based on their betweenness val-
ues, which are obtained by dividing the standard site
betweenness scores (Freeman, 1977) by the indegree of
the respective vertices. A picture of metabolic network
emerges, in which there are core clusters centered at
hub-substances, surrounded by outer shells of less con-
nected substances, and a few other clusters at interme-
diate scales. In general, clusters at different scales seem
to be meaningful, so the whole hierarchy should be taken
into account.

Wilkinson and Huberman (Wilkinson and Huber-
man, 2004) analyzed a network of gene co-occurrence
to find groups of related genes. The network is built
by connecting pairs of genes that are mentioned to-
gether in the abstract of articles of the Medline database
(http://medline.cos.com/). Clusters were found with
a modified version of the algorithm by Girvan and New-
man, in which edge betweenness is computed by consid-
ering the shortest paths of a small subset of all vertex
pairs, to gain computer time (Section V.A). As a result,
genes belonging to the same cluster turn out to be func-
tionally related to each other. Co-occurrence of terms is
also used to extract associations between genes and dis-
eases, to find out which genes are relevant for a specific
disease. Communities of genes related to colon cancer
can be helpful to identify the function of the genes.

B. Social networks

Networks depicting social interactions between people
have been studied for decades (Scott, 2000; Wasserman
and Faust, 1994). Recently the modern Information and
Communication Technology (ICT) has opened new in-
teraction modes between individuals, like mobile phone
communications and online interactions enabled by the
Internet. Such new social exchanges can be accurately
monitored for very large systems, including millions of
individuals, whose study represents a huge opportunity
for social science. Communities of social networks can
be friendship circles, or groups of people sharing com-

www.manaraa.com

75

FIG. 35 Community structure of a social network of mobile
phone communication in Belgium. Dots indicate subcommu-
nities at the lower hierarchical level (with more than 100 peo-
ple) and are colored in a red-green scale to represent the level
of representation of the two main languages spoken in Bel-
gium (red for French and green for Dutch). Communities of
the two larger groups are linguistically homogeneous, with
more than 85% of people speaking the same language. Only
one community (zoomed), which lies at the border between
the two main aggregations, has a more balanced distribution
of languages. Reprinted figure with permission from (Blondel
et al., 2008). c©2008 by IOP Publishing and SISSA.

mon interests.
Blondel et al. have analyzed a network of mobile phone

communications between users of a Belgian phone oper-
ator (Blondel et al., 2008). The vertices of the graph are
2.6 million and the edges are weighted by the cumulative
duration of phone calls between users in the observation
time frame. The clustering analysis, performed with a
fast hierarchical modularity optimization technique de-
veloped by the authors (discussed in Section VI.A.1), de-
livers six hierarchical levels. The highest level consists
of 261 groups with more than 100 vertices, which are
clearly arranged in two main groups, linguistically ho-
mogeneous, reflecting the linguistic split of Belgian pop-
ulation (Fig. 35). Tyler et al. (Tyler et al., 2003) studied
a network of e-mail exchanges between people working
at HP Labs. They applied the same modified version of
Girvan-Newman algorithm that two of the authors have
used to find communities of related genes (Wilkinson and
Huberman, 2004) (Section XVI.A). The method enables
one to measure the degree of membership of each vertex
in a community and allows for overlaps between com-

FIG. 36 Communities in social networking sites. (Top) Vi-
sualization of a network of friendships between students at
Caltech, constructed from Facebook data (September 2005).
The colors/shapes indicate the dormitories (Houses) of the
students. (Bottom) Topological communities of the network,
which are quite homogeneous with respect to House affilia-
tion. Reprinted figures with permission from Refs. (Porter
et al., 2009) and (Traud et al., 2008).

munities. The detected clusters matched quite closely
the organization of the Labs in departments and project
groups, as confirmed by interviews conducted with re-
searchers.

Social networking sites, like Myspace
(www.myspace.com), Friendster (www.friendster.com),
Facebook (www.facebook.com), etc. have become
extremely popular in the last years. They are online
platforms that allow people to communicate with friends,
send e-mails, solicit opinions on specific issues, spread
ideas and/or fads, etc. Traud et al. (Traud et al., 2008)

www.manaraa.com

76

used anonymous Facebook data to create networks of
friendships between students of different American uni-
versities, where vertices/students are connected if they
are friends on Facebook. Communities were detected by
applying a variant of Newman’s spectral optimization
of modularity (Section VI.A.4): the results were further
refined through additional steps á la Kernighan-Lin
(Section IV.A). One of the goals of the study was to
infer relationships between the online and offline lives
of the students. By using demographic information on
the students’ populations, one finds that communities
are organized by class year or by House (dormitory)
affiliation, depending on the university (Fig. 36). Yuta
et al. (Yuta et al., 2007) observed a gap in the commu-
nity size distribution of a friendship network extracted
from the largest social networking site in Japan (as of
December 2006), mixi (mixi.jp). Communities were
identified with the fast greedy modularity optimization
by Clauset et al. (Clauset et al., 2004). The gap occurs
in the intermediate range of sizes between 20 and 400,
where but a few communities are observed. Yuta et al.
introduced a model where people form new friendships
both by “closing” ties with people who are friends of
friends, and by setting new links with individuals having
similar interests. In this way most groups turn out to be
either small or large, and medium size groups are rare.

Collaboration networks, in which individuals are linked
if they are (were) involved in a common activity, have
been often studied because they embed an implicit ob-
jective concept of acquaintance, that is not easy to cap-
ture in direct social experiments/interviews. For in-
stance, somebody may consider another individual a
friend, while the latter may disagree. A collaboration
instead is a proof of a social relationship between indi-
viduals. The analysis of the structure of scientific collab-
oration networks (Newman, 2001) has exerted a big influ-
ence on the development of the modern network science.
Scientific collaboration is associated to coauthorship: two
scientists are linked if they have coauthored at least one
paper together. Information about coauthorships can
be extracted from different databases of research papers.
Communities indicate groups of people with common re-
search interests, i. e. topical or disciplinary groups. In
the seminal paper by Girvan and Newman (Girvan and
Newman, 2002), the authors applied their method on a
collaboration network of scientists working at the Santa
Fe Institute, and were able to discriminate between re-
search divisions (Fig. 2b). The community structure of
scientific collaboration networks has been investigated by
many authors (Danon et al., 2006; Donetti and Muñoz,
2004; Duch and Arenas, 2005; Farkas et al., 2007; Gre-
gory, 2007; Lehmann and Hansen, 2007; Nepusz et al.,
2008; Newman, 2004b, 2006a; Noack and Rotta, 2008;
Palla et al., 2007, 2005; Pujol et al., 2006; Radicchi et al.,
2004; Reichardt and Bornholdt, 2006a; Richardson et al.,
2008; S.-W. Son et al., 2006; Shen et al., 2009; Vragović
and Louis, 2006; White and Smyth, 2005; Zhou, 2003b).
Other types of collaboration networks have been studied

too. Gleiser and Danon (Gleiser and Danon, 2003) con-
sidered a collaboration network of jazz musicians. Ver-
tices are either musicians, connected if they played in the
same band, or bands, connected if they have a musician
in common. By applying the algorithm of Girvan and
Newman they found that communities reflect both racial
segregation (with two main groups comprising only black
or white players) and geographical separation, due to the
different recording locations.

C. Other networks

Citation networks (de Solla Price, 1965) have been reg-
ularly used to understand the citation patterns of authors
and to disclose relationships between disciplines. Rosvall
and Bergstrom (Rosvall and Bergstrom, 2008) used a ci-
tation network of over 6000 scientific journals to derive a
map of science. They used a clustering technique based
on compressing the information on random walks taking
place on the graph (Section IX.B). A random walk fol-
lows the flow of citations from one field to another, and
the fields emerge naturally from the clustering analysis
(Fig. 37). The structure of science resembles the letter U,
with the social sciences and engineering at the terminals,
joined through a chain including medicine, molecular bi-
ology, chemistry and physics.

Reichardt and Bornholdt (Reichardt and Bornholdt,
2007) performed a clustering analysis on a network built
from bidding data taken from the German version of
Ebay (www.ebay.de), the most popular online auction
site. The vertices are bidders and two vertices are con-
nected if the corresponding bidders have expressed in-
terest for the same item. Clusters were detected with
the multiresolution modularity optimization developed
by the authors themselves (Reichardt and Bornholdt,
2006a) (Section VI.B). In spite of the variety of items
that it is possible to purchase through Ebay, about 85% of
bidders were classified into a few major clusters, reflect-
ing bidders’ broad categories of interests. Ebay data were
also examined by Jin et al. (Jin et al., 2007), who consid-
ered bidding networks where the vertices are the individ-
ual auctions and edges are placed between auctions hav-
ing at least one common bidder. Communities, detected
with greedy modularity optimization (Newman, 2004b)
(Section VI.A.1), allow to identify substitute goods, i. e.
products that have value for the same bidder, so that
they can be purchased together or alternatively.

Legislative networks enable one to deduce associations
between politicians through their parliamentary activity,
which may be related or not to party affiliation. Porter
and coworkers have carried out numerous studies on the
subject (Porter et al., 2007, 2005; Zhang et al., 2008),
by using data on the Congress of the United States. In
Refs. (Porter et al., 2007, 2005), they examined the com-
munity structure of networks of committees in the US
House of Representatives. Committees sharing common
members are connected by edges, which are weighted by

www.manaraa.com

77

Molecular & Cell Biology

Medicine

Physics

Ecology & Evolution

Economics

Geosciences

Psychology

Chemistry

Psychiatry

Environmental Chemistry & Microbiology

Mathematics

Computer Science

Analytic ChemistryBusiness & Marketing

Political Science

Fluid Mechanics

Medical Imaging

Material Engineering

Sociology

Probability & Statistics

Astronomy & Astrophysics

Gastroenterology

Law

Chemical Engineering

Education

Telecommunication

Control Theory

Operations Research

Ophthalmology

Crop Science

Geography

Anthropology

Computer Imaging

Agriculture

Parasitology

Dentistry

Dermatology

Urology

Rheumatology

Applied Acoustics

Pharmacology

Pathology

Otolaryngology

Electromagnetic Engineering

Circuits

Power Systems

Tribology

Neuroscience

Orthopedics Veterinary

Environmental Health

A

Citation flow from B to A
Citation flow within field

Citation flow from A to B
Citation flow out of field

B

FIG. 37 Map of science derived from a clustering analysis of a citation network comprising more than 6000 journals. Reprinted
figure with permission from (Rosvall and Bergstrom, 2008). c©2008 by the National Academy of Science of the USA.

dividing the number of common members by the num-
ber one would expect to have if committee memberships
were randomly assigned. Hierarchical clustering (Sec-
tion IV.B) reveals close connections between some of
the committees. In another work (Zhang et al., 2008),
Zhang et al. analyzed networks of legislation cospon-
sorship, in which vertices are legislators and two legisla-
tors are linked if they support at least one common bill.
Communities, identified with a modification of Newman’s
spectral optimization of modularity (Section VI.A.4), are
correlated with party affiliation, but also with geography
and committee memberships of the legislators.

Networks of correlations between time series of stock
returns have received a growing attention in the past few
years (Mantegna, 1999). In early studies, scholars found
clusters of correlated stocks by computing the maximum
spanning tree of the network (Bonanno et al., 2003, 2000;
Onnela et al., 2003, 2002) (Section A.1), and realized
that such clusters match quite well the economic sectors
of the stocks. More recently, the community structure of
the networks has been investigated by means of proper
clustering algorithms. Farkas et al. (Farkas et al., 2007)

have applied the weighted version of the Clique Percola-
tion Method (Section XI.A) and found that the presence
of two strong (i. e. carrying high correlation) edges in tri-
angles is usually accompanied by the presence of a strong
third edge. Heimo et al. (Heimo et al., 2008) used the
weighted version of the multiresolution method by Re-
ichardt and Bornholdt (Reichardt and Bornholdt, 2006a)
(Section VI.B). Clusters correspond to relevant business
sectors, as indicated by Forbes classification; moreover,
smaller clusters at lower hierarchical levels seem to corre-
spond to (economically) meaningful substructures of the
main clusters.

XVII. OUTLOOK

Despite the remote origins and the great popularity of
the last years, research on graph clustering has not yet
given a satisfactory solution of the problem and leaves
us with a number of important open issues. From our
exposition it appears that the field has grown in a rather
chaotic way, without a precise direction or guidelines. In

www.manaraa.com

78

some cases, interesting new ideas and tools have been pre-
sented, in others existing methods have been improved,
becoming more accurate and/or faster.

What the field lacks the most is a theoretical frame-
work that defines precisely what clustering algorithms
are supposed to do. Everybody has his/her own idea of
what a community is, and most ideas are consistent with
each other, but, as long as there is still disagreement, it
remains impossible to decide which algorithm does the
best job and there will be no control on the creation of
new methods. Therefore, we believe that the first and
foremost task that the scientific community working on
graph clustering has to solve in the future is defining a set
of reliable benchmark graphs, against which algorithms
should be tested (Section XIV.A). Defining a benchmark
goes far beyond the issue of testing. It means designing
practical examples of graphs with communities, and, in
order to do that, one has to agree on the fundamental
concepts of community and partition. Clustering algo-
rithms have to be devised consistently with such defini-
tions, in order to give the best performance on the set of
designated benchmarks, which represent a sort of ground
truth. The explosion in the number of algorithms we have
witnessed in recent times is due precisely to the present
lack of reliable mechanisms of control of their quality
and comparison of their performances. If the commu-
nity agrees on a benchmark, the future development of
the field will be more coherent and the progress brought
by new methods can be evaluated in an unbiased man-
ner. The planted `-partition model (Condon and Karp,
2001) is the easiest recipe one can think of when it comes
to defining clusters, and is the criterion underlying well-
known benchmarks, like that by Girvan and Newman.
We believe that the new benchmarks have to be defined
along the same lines. The benchmark graphs recently in-
troduced by Lancichinetti et al. (Lancichinetti and Fortu-
nato, 2009; Lancichinetti et al., 2008) and by Sawardecker
et al. (Sawardecker et al., 2009) are an important step in
this direction.

Defining a benchmark implies specifying the “natural”
partition of a graph, the one that any algorithm should
find. This issue in turn involves the concept of quality
of a partition, that has characterized large part of the
development of the field, in particular after the intro-
duction of Newman-Girvan modularity (Section III.C.2).
Estimating the quality of a partition allows to discrimi-
nate among the large number of partitions of a graph. In
some cases this is not difficult. For instance, in the bench-
mark by Girvan and Newman there is a single meaningful
partition, and it is hard to argue with that. But most
graphs of the real world have a hierarchical structure,
with communities including smaller communities and so
on. Hence there are several meaningful partitions, cor-
responding to different hierarchical levels, and discrimi-
nating among them is hard, as they may be all relevant,
in a sense. If we consider the human body, we cannot
say that the organization in tissues of the cells is more
important than the organization in organs. We have seen

that there are recent methods dealing with the problem of
finding meaningful hierarchical levels (Section XII). Such
methods rank the hierarchical partitions based on some
criterion and one can assess their relevance through the
ranking. One may wonder whether it makes sense sorting
out levels, which means introducing a kind of threshold
on the quality index chosen to rank partitions (to dis-
tinguish “good” from “bad” partitions), or whether it
is more appropriate to keep the information given by the
whole set of hierarchical partitions. The work by Clauset
et al. on hierarchical random graphs (Clauset et al.,
2007; Clauset et al., 2008), discussed in Section XII.B,
indirectly raises this issue. There it was shown that the
ensemble of model graphs, represented by dendrograms,
encodes most of the information on the structure of the
graph at study, like its degree distribution, transitivity
and distribution of shortest path lengths. At the same
time, by construction, the model reveals the whole hier-
archy of communities, without any distinction between
good and bad partitions. The information given by a
dendrogram may become redundant and confusing when
the graph is large, as then there is a big number of par-
titions. This is actually the reason why quality functions
were originally introduced. However, in that case, one
was dealing with artificial hierarchies, produced by tech-
niques that systematically yield a dendrogram as a re-
sult of the analysis (like, e.g. hierarchical clustering), re-
gardless of whether the graph actually has a hierarchical
structure or not. Here instead we speak of real hierarchy,
which is a fundamental element of real graphs and, as
such, it must be considered in any serious approach to
graph clustering. Any good clustering method must be
able to tell whether a graph has community structure or
not, and, in the first case, whether the community struc-
ture is hierarchical (i. e. with two or more levels) or flat
(one level). We expect that the concept of hierarchy will
become a key ingredient of future clustering techniques.
In particular, assessing the consistence of the concepts of
partitions’ quality and hierarchical structure is a major
challenge.

A precise definition of null models, i. e. of graphs with-
out community structure, is also missing. This aspect is
extremely important, though, as defining communities
also implies deciding whether or not they exist in a spe-
cific graph. At the moment, it is generally accepted that
random graphs have no communities. The null model
of modularity (Section III.C.2), by far the most popu-
lar, comprises all graphs with the same expected degree
sequence of the original graph and random rewiring of
edges. This class of graphs is characterized, by construc-
tion, by the fact that any vertex can be linked to any
other, as long as the constraint on the degree sequence
is satisfied. But this is by no means the only possibility.
A community can be generically defined as a subgraph
whose vertices have a higher probability to be connected
to the other vertices of the subgraph than to external
vertices. The planted `-partition model (Condon and
Karp, 2001) is based on this principle, as we have seen.

www.manaraa.com

79

However, this does not mean that the linking probabili-
ties of a vertex with respect to the other vertices in its
community or in different communities be constant (or
simply proportional to their degrees, as in the configura-
tion model (Luczak, 1992; Molloy and Reed, 1995)). In
fact, in large networks it is reasonable to assume that the
probability that a vertex is linked to most vertices is zero,
as the vertex “ignores” their existence. This does not ex-
clude that the probability that the vertex gets connected
to the “known” vertices is the same (or proportional to
their degrees), in which case the graph would still be ran-
dom and have no communities. We believe that we are
still far from a precise definition and a complete clas-
sification of null models. This represents an important
research line for the future of the field, for three main rea-
sons: 1) to better disentangle “true” communities from
byproducts of random fluctuations; 2) to pose a stringent
test to existing and future clustering algorithms, whose
reliability would be questionable if they found “false pos-
itives” in null model graphs; 3) to handle “hybrid” sce-
narios, where a graph displays community structure on
some portions of it, while the rest is essentially random
and has no communities.

In the previous chapters we have seen a great number
of clustering techniques. Which one(s) shall we use? At
the moment the scientific community is unable to tell.
Modularity optimization is probably the most popular
method, but the results of the analysis of large graphs
are likely to be unreliable (Section VI.C). Nevertheless,
people have become accustomed to use it, and there have
been several attempts to improve the measure. A new-
comer, who wishes to find clusters in a given network
and is not familiar with clustering techniques, would not
know, off-hand, which method to use, and he/she would
hardly find indications about good methods in any single
paper on graph clustering, except perhaps on the method
presented in the paper. So, people keep using algorithms
because they have heard of them, or because they know
that other people are using them, or because of the rep-
utation of the scientists who designed them. Waiting for
future reliable benchmarks, that may give an objective
assessment of the quality of the algorithms, there are at
the moment hardly solid reasons to prefer an algorithm
to another. However, we want to stress that there is no
such thing as the perfect method, so it is pointless to
look for it. Among the other things, if one tries to look
for a very general method, that should give good results
on any type of graph, one is inevitably forced to make
very general assumptions on the structure of the graph
and on the properties of communities. In this way one
neglects a lot of specific features of the system, that may
lead to a more accurate detection of the clusters. Inform-
ing a method with features characterizing some types of
graphs makes it far more reliable to detect the community
structure of those graphs than a general method, even if
its applicability may be limited. Therefore in the future
we envision the development of domain-specific clustering
techniques. The challenge here is to identify the peculiar

features of classes of graphs, which are bound to become
crucial ingredients in the design of suitable algorithms.
Some of the methods available today are actually based
on assumptions that hold only for some specific categories
of graphs. The Clique Percolation Method by Palla et
al. (Palla et al., 2005), for instance, may work well for
graphs characterized by a large number of cliques, like
certain social networks, whereas it may give poor results
otherwise.

Moving one step further, one should learn how to use
specific information about a graph, whenever available,
e. g. properties of vertices and/or partial information
about their classification. For instance, it may be that
one has some information on a subset of vertices, like
demographic data on people of a social network, and such
data may highlight relationships between people that are
not obvious from the network of social interactions. In
this case, using only the social network may be reductive
and ideally one should exploit both the structural and
the non-structural information in the search of clusters,
as the latter should be consistent with both inputs. How
to do this is an open problem.

Most algorithms in the literature deal with the “clas-
sical” case of a graph with undirected and unweighted
edges. This is certainly the simplest case one could think
of, and graph clustering is already a complex task on such
types of graphs. We know that real networks may be
directed, have weighted connections, be bipartite. Meth-
ods to deal with such systems have been developed, as
we have seen, especially in the most recent literature,
but they are mostly preliminary attempts and there is
room for improvement. Another situation that may oc-
cur in real systems is the presence of edges with posi-
tive and negative weights, indicating attractive and re-
pulsive interactions, respectively. This is the case, for
instance, of correlation data (Mantegna, 1999). In this
case, ideal partitions would have positively weighted intr-
acluster edges and negatively weighted intercluster edges.
We have discussed some studies in this direction (Gómez
et al., 2008; Kaplan and Forrest, 2008; Traag and Brugge-
man, 2008), but we are just at the beginning of this en-
deavour. Instead, there are no algorithms yet which are
capable to deal with graphs in which there are edges of
several types, indicating different kinds of interactions
between the vertices. Agents of social networks, for in-
stance, may be joined by working relationships, friend-
ship, family ties, etc. At the moment there does not seem
to exist a better way of proceeding other than keeping
edges of one type and forgetting the others, repeating the
analysis for each type of edges and eventually comparing
the results obtained. Finally, since most real networks
are built through the results of experiments, which carry
errors in their estimates, it would be useful to consider
as well the case in which edges have not only associated
weights, but also errors on their values.

Since the paper by Palla et al. (Palla et al., 2005),
overlapping communities have received a lot of attention
(Section XI). However, there is still no consensus about

www.manaraa.com

80

a quantitative definition of the concept of overlapping
community, and most definitions depend on the method
adopted. Intuitively, one would expect that clusters share
vertices lying at their borders, and this idea has inspired
most algorithms. However, clusters detected with the
Clique Percolation Method (Section XI.A) often share
central vertices of the clusters, which makes sense in spe-
cific instances, especially in social networks. So, it is still
unclear how to characterize overlapping vertices. More-
over, the concept of overlapping clusters seems at odds
with that of hierarchical structure. No dendrogram can
be drawn if there are overlapping vertices, at least in the
standard way. Due to the relevance of both features in
real networks, it is necessary to adapt them to each other
in a consistent way. Overlapping vertices pose problems
as well when it comes to comparing the results of different
methods on the same graph. Most similarity measures
are defined only in the case of partitions, where each ver-
tex is assigned to a single cluster (Section XIV.B). It is
then necessary to extend such definitions to the case of
overlapping communities, whenever possible.

Another issue that is getting increasingly more popu-
lar is the study of graphs evolving in time. This is now
possible due to the availability of timestamped network
data sets. Tracking the evolution of community structure
in time is very important, to uncover how communities
are generated and how they interact with each other.
Scholars have just begun to study this problem (Fenn
et al., 2008; Hopcroft et al., 2004; Palla et al., 2007) (Sec-
tion XV.B). Typically one analyzes snapshots at different
times and checks what happened at time t+1 to the com-
munities at time t. It would be probably better to use
simultaneously the whole dynamic data set, and future
work shall aim at defining proper ways to do that.

The computational complexity of graph clustering al-
gorithms has improved by at least one power in the graph
size (on average) in just a couple of years. Due to the
large size of many systems one wishes to investigate, the
ultimate goal would be to design techniques with lin-
ear or even sublinear complexity. Nowadays partitions
in graphs with up to millions of vertices can be found.
However, the results are not yet very reliable, as they are
usually obtained by greedy optimizations, which yield
rough approximations of the desired solution. In this
respect the situation could improve by focusing on the
development of efficient local methods, for two reasons:
1) they enable analyses of portions of the graph, indepen-
dently of the rest; 2) they are often suitable for parallel
implementations, which may speed up considerably the
computation.

Finally, if there has been a tremendous effort in the de-
sign of clustering algorithms, basically nothing has been
done to make sense of their results. What shall we do
with communities? What can they tell us about a sys-
tem? The hope is that they will enable one to disclose
“hidden” relationships between vertices, due to features
that are not known, because they are hard to measure,
for instance. It is quite possible that the scientific com-

munity will converge sooner or later to a definition a
posteriori of community. Already now, most algorithms
yield similar results in practical applications. But what
is the relationship between the vertex classification given
by the algorithms and real classifications? This is the
main question beneath the whole endeavor.

Acknowledgments

I am indebted to these people for giving useful sugges-
tions and advice to improve this manuscript at various
stages: A. Arenas, A. Clauset, S. Gómez, R. Guimerà,
R. Lambiotte, A. Lancichinetti, J.-P. Onnela, G. Palla,
M. A. Porter, F. Radicchi, J. J. Ramasco, C. Wiggins.

APPENDIX A: Elements of Graph Theory

1. Basic Definitions

A graph G is a pair of sets (V,E), where V is a set
of vertices or nodes and E is a subset of V 2, the set of
unordered pairs of elements of V . The elements of E are
called edges or links, the two vertices that identify an edge
are called endpoints. An edge is adjacent to each of its
endpoints. If each edge is an ordered pair of vertices one
has a directed graph (or digraph). In this case an ordered
pair (v, w) is an edge directed from v to w, or an edge
beginning at v and ending at w. A graph is visualized as
a set of points connected by lines, as shown in Fig. 38.
In many real examples, graphs are weighted, i.e. a real
number is associated to each of the edges. Graphs do not
include loops, i.e. edges connecting a vertex to itself, nor
multiple edges, i.e. several edges joining the same pair of
vertices. Graphs with loops and multiple edges are called
multigraphs. Generalizations of graphs admitting edges
between any number of vertices (not necessarily two) are
called hypergraphs.

A graph G′ = (V ′, E ′) is a subgraph of G = (V, E) if
V ′ ⊂ V and E′ ⊂ E. If G′ contains all edges of G that join
vertices of V ′ one says that the subgraph G′ is induced
or spanned by V ′. A partition of the vertex set V in two
subsets S and V − S is called a cut; the cut size is the
number of edges of G joining vertices of S with vertices
of V − S.

We indicate the number of vertices and edges of a
graph with n and m, respectively. The number of ver-
tices is the order of the graph, the number of edges its
size. The maximum size of a graph equals the total num-
ber of unordered pairs of vertices, n(n− 1)/2. If |V | = n
and |E| = m = n(n − 1)/2, the graph is a clique (or
complete graph), and is indicated as Kn. Two vertices
are neighbors (or adjacent) if they are connected by an
edge. The set of neighbors of a vertex v is called neigh-
borhood, and we shall denote it with Γ(v). The degree kv
of a vertex v is the number of its neighbors. The degree
sequence is the list of the degrees of the graph vertices,

www.manaraa.com

81

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������

���������
���������
���������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����������
����������
����������
����������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�

FIG. 38 A sample graph with seven vertices and seven edges.

kv1 , kv2 , ..., kv−n. On directed graphs, one distinguishes
two types of degree for a vertex v: the indegree, i.e. the
number of edges beginning at v and the outdegree, i.e.
the number of edges ending at v. The analogue of de-
gree on a weighted graph is the strength, i.e. the sum of
the weights of the edges adjacent to the vertex. Another
useful local property of graphs is transitivity or cluster-
ing (Watts and Strogatz, 1998), which indicates the level
of cohesion between the neighbors of a vertex 21. The
clustering coefficient cv of vertex v is the ratio between
the number of edges joining pairs of neighbors of v and
the total number of possible edges, given by kv(kv−1)/2,
kv being the degree of v. According to this definition, cv
measures the probability that a pair of neighbors of v are
connected. Since all neighbors of v are connected to v by
definition, edges connecting pairs of neighbors of v form
triangles with v. This is why the definition is often given
in terms of number of triangles.

A path is a graph P = (V (P), E(P)), with V (P) =
{x0, x1, ..., xl} and E(P) = {x0x1, x1x2, ..., xl−1xl}. The
vertices x0 and xl are the endvertices of P, whereas l
is its length. Given the notions of vertices, edges and
paths, one can define the concept of independence. A set
of vertices (or edges) of a graph are independent if no two
elements of them are adjacent. Similarly, two paths are
independent if they only share the endvertices. A cycle
is a closed path whose vertices and edges are all distinct.
Cycles of length l are indicated with Cl. The smallest
non-trivial cycle is the triangle, C3.

Paths allow to define the concept of connectivity and
distance in graphs. A graph is connected if, given any
pair of vertices, there is at least one path going from
one vertex to the other. In general, there may be multi-

21 The term clustering is commonly adopted to indicate community
detection in some disciplines, like computer science, and we shall
often use it in this context throughout the manuscript. We shall
pay attention to disambiguate the occurrences in which cluster-
ing indicates instead the local property of a vertex neighborhood
described here.

ple paths connecting two vertices, with different lengths.
A shortest path, or geodesic, between two vertices of a
graph, is a path of minimal length. Such minimal length
is the distance between the two vertices. The diameter
of a connected graph is the maximal distance between
two vertices. If there is no path between two vertices,
the graph is divided in at least two connected subgraphs.
Each maximal connected subgraph of a graph is called
connected component.

A graph without cycles is a forest. A connected forest
is a tree. Trees are very important in graph theory and
deserve some attention. In a tree, there can be only one
path from a vertex to any other. In fact, if there were
at least two paths between the same pair of vertices they
would form a cycle, while the tree is an acyclic graph by
definition. Further, the number of edges of a tree with
n vertices is n − 1. If any edge of a tree is removed,
it would get disconnected in two parts; if a new edge is
added, there would be at least one cycle. This is why a
tree is a minimally connected, maximally acyclic graph
of a given order. Every connected graph contains a span-
ning tree, i.e. a tree sharing all vertices of the graph.
On weighted graphs, one can define a minimum (maxi-
mum) spanning tree, i.e. a spanning tree such that the
sum of the weights on the edges is minimal (maximal).
Minimum and maximum spanning trees are often used in
graph optimization problems, including clustering.

A graph G is bipartite if the vertex set V is separated in
two disjoint subsets V1 and V2, or classes, and every edge
joins a vertex of V1 with a vertex of V2. The definition
can be extended to that of r-partition, where the vertex
classes are r and no edge joins vertices within the same
class. In this case one speaks of multipartite graphs.

2. Graph Matrices

The whole information about the topology of a graph
of order n is entailed in the adjacency matrix A, which
is an n × n matrix whose element Aij equals 1 if there
is an edge joining vertices i and j, otherwise it is zero.
Due to the absence of loops the diagonal elements of the
adjacency matrix are all zero. For an undirected graph
A is a symmetric matrix. The sum of the elements of
the i-th row or column yields the degree of node i. If
the edges are weighted, one defines the weight matrix
W, whose element Wij expresses the weight of the edge
between vertices i and j.

The spectrum of a graph G is the set of eigenvalues
of its adjacency matrix A. Spectral properties of graph
matrices play an important role in the study of graphs.
For instance, the stochastic matrices rule the process of
diffusion (random walk) on a graph. The right stochastic
matrix R is obtained from A by dividing the elements of
each row i by the degree of vertex i. The left stochas-
tic matrix T, or transfer matrix, is the transpose of R.
The spectra of stochastic matrices allow to evaluate, for
instance, the mixing time of the random walk, i.e. the

www.manaraa.com

82

time it takes to reach the stationary distribution of the
process. The latter is obtained by computing the eigen-
vector of the transfer matrix corresponding to the largest
eigenvalue.

Another important matrix is the Laplacian L = D−A,
where D is the diagonal matrix whose element Dii equals
the degree of vertex i. The Laplacian is one of the most
studied matrices and finds application in many differ-
ent contexts, like graph connectivity (Bollobas, 1998),
synchronization (Barahona and Pecora, 2002; Nishikawa
et al., 2003), diffusion (Chung, 1997) and graph parti-
tioning (Pothen, 1997). By construction, the sum of the
elements of each row of the Laplacian is zero. This im-
plies that L always has at least one zero eigenvalue, cor-
responding to the eigenvector with all equal components,
such as (1, 1, ..., 1). Eigenvectors corresponding to differ-
ent eigenvalues are all orthogonal to each other, so the
sum of the elements of all eigenvectors but the trivial
one(s) must be zero. In fact, the scalar product of the
trivial eigenvector with equal components by any eigen-
vector yields just the sum of its elements. Interestingly,
L has as many zero eigenvalues as there are connected
components in the graph. So, the Laplacian of a con-
nected graph has but one zero eigenvalue, all others be-
ing positive. The eigenvector corresponding to the sec-
ond smallest eigenvalue is called Fiedler vector (Fiedler,
1973, 1975) and is regularly used in graph partitioning,
as described in Section IV.A.

3. Model graphs

In this section we present the most popular models of
graphs introduced to describe real systems, at least to
some extent. Such graphs are useful null models in com-
munity detection, as they do not have community struc-
ture, so they can be used for negative tests of clustering
algorithms.

The oldest model is that of random graph, proposed
by Solomonoff and Rapoport (Solomonoff and Rapoport,
1951) and independently by Erdös and Rényi (Erdös and
Rényi, 1959). There are two parameters: the number of
vertices n and the connection probability p. Each pair
of vertices is connected with equal probability p indepen-
dently of the other pairs. The expected number of edges
of the graph is pn(n−1)/2, and the expected mean degree
〈k〉 = p(n − 1). The degree distribution of the vertices
of a random graph is binomial, and in the limit n→∞,
p → 0 for fixed 〈k〉 it converges to a Poissonian. There-
fore, the vertices have all about the same degree, close
to 〈k〉 (Fig. 39, top). The most striking property of this
class of graphs is the phase transition observed by vary-
ing 〈k〉 in the limit n → ∞. For 〈k〉 < 1, the graph is
separated in connected components, each of them being
microscopic, i.e. occupying but a vanishing portion of the
system size. For 〈k〉 > 1, instead, one of the components
becomes macroscopic (giant component), i.e. it occupies
a finite fraction of the graph vertices.

FIG. 39 Basic models of complex networks. (Top) Erdös-
Rényi random graph with 100 vertices and a link probability
p = 0.02. (Center) Small world graph á la Watts-Strogatz,
with 100 vertices and a rewiring probability p = 0.1. (Bot-
tom) Barabási-Albert scale-free network, with 100 vertices
and an average degree of 2. Courtesy by J. J. Ramasco.

www.manaraa.com

83

The diameter of a random graph with n vertices is very
small, growing only logarithmically with n. This prop-
erty (small-world effect) is very common in many real
graphs. The first evidence that social networks are char-
acterized by paths of small length was provided by a se-
ries of famous experiments conducted by the phychologist
Stanley Milgram (Milgram, 1967; Travers and Milgram,
1969). The expected clustering coefficient of a vertex of a
random graph is p, as the probability for two vertices to
be connected is the same whether they are neighbors of
the same vertex or not. Real graphs, however, are char-
acterized by far higher values of the clustering coefficient
as compared to random graphs of the same size. Watts
and Strogatz (Watts and Strogatz, 1998) showed that the
small world property and high clustering coefficient can
coexist in the same system. They designed a class of
graphs which result from an interpolation between a reg-
ular lattice, which has high clustering coefficient, and a
random graph, which has the small-world property. One
starts from a ring lattice in which each vertex has degree
k, and with a probability p each edge is rewired to a dif-
ferent target vertex (Fig. 39, center). It turns out that
low values of p suffice to reduce considerably the length
of shortest paths between vertices, because rewired edges
act as shortcuts between initially remote regions of the
graph. On the other hand, the clustering coefficient re-
mains high, since few rewired edges do not perturb ap-
preciably the local structure of the graph, which remains
similar to the original ring lattice. For p = 1 all edges are
rewired and the resulting structure is a random graph á
la Erdös and Rényi.

The seminal paper of Watts and Strogatz triggered a
huge interest towards the graph representation of real
systems. One of the most important discoveries was that
the distribution of the vertex degree of real graphs is very
heterogeneous (Albert et al., 1999), with many vertices
having few neighbors coexisting with some vertices with
many neighbors. In several cases the tail of this distri-
bution can be described as a power law with good ap-
proximation22, hence the expression scale-free networks.
Such degree heterogeneity is responsible for a number of
remarkable features of real networks, such as resilience to
random failures/attacks (Albert et al., 2000), and the ab-
sence of a threshold for percolation (Cohen et al., 2000)
and epidemic spreading (Pastor-Satorras and Vespignani,
2001). The most popular model of a graph with a power
law degree distribution is the model by Barabási and Al-
bert (Barabási and Albert, 1999). A version of the model
for directed graphs had been proposed much earlier by de
Solla Price (Price, 1976), building up on previous ideas
developed by Simon (Simon, 1955). The graph is created

22 The power law is however not necessary to explain the properties
of complex networks. It is enough that the tails of the degree
distribution are “fat”, i. e. spanning orders of magnitude in
degree. They may or may not be accurately fitted by a power
law.

with a dynamic procedure, where vertices are added one
by one to an initial core. The probability for a new vertex
to set an edge with a preexisting vertex is proportional
to the degree of the latter. In this way, vertices with high
degree have large probability of being selected as neigh-
bors by new vertices; if this happens, their degree further
increases so they will be even more likely to be chosen in
the future. In the asymptotic limit of infinite number of
vertices, this rich-gets-richer strategy generates a graph
with a degree distribution characterized by a power-law
tail with exponent 3. In Fig. 39 (bottom) we show an
example of Barabási-Albert (BA) graph. The cluster-
ing coefficient of a BA graph decays with the size of the
graph, and it is much lower than in real networks. More-
over, the power law decays of the degree distributions
observed in real networks are characterized by a range
of exponents’ values (usually between 2 and 3), whereas
the BA model yields a fixed value. However, many re-
finements of the BA model as well as plenty of differ-
ent models have been later introduced to account more
closely for the features observed in real systems (for de-
tails see (Albert and Barabási, 2002; Barrat et al., 2008;
Boccaletti et al., 2006; Mendes and Dorogovtsev, 2003;
Newman, 2003; Pastor-Satorras and Vespignani, 2004)).

References

Adamcsek, B., G. Palla, I. J. Farkas, I. Derényi, and T. Vic-
sek, 2006, Bioinformatics 22(8), 1021.

Adomavicius, G., and A. Tuzhilin, 2005, IEEE Trans. Knowl.
Data Eng. 17(6), 734.

Agarwal, G., and D. Kempe, 2008, Eur. Phys. J. B 66, 409.
Ahn, Y.-Y., J. P. Bagrow, and S. Lehmann, 2009, eprint

arXiv:0903.3178.
Ahuja, R. K., T. L. Magnanti, and J. B. Orlin, 1993, Net-

work Flows: Theory, Algorithms, and Applications (Pren-
tice Hall, Englewood Cliffs, USA).

Akaike, H., 1974, IEEE Trans. Autom. Control 19(6), 716.
Alba, R. D., 1973, J. Math. Sociol. 3, 113.
Albert, R., and A.-L. Barabási, 2002, Rev. Mod. Phys. 74(1),

47.
Albert, R., H. Jeong, and A.-L. Barabási, 1999, Nature 401,

130.
Albert, R., H. Jeong, and A.-L. Barabási, 2000, Nature 406,

378.
Alves, N. A., 2007, Phys. Rev. E 76(3), 036101.
Anthonisse, J. M., 1971, The rush in a directed graph, Tech-

nical Report, Stichting Mathematisch Centrum, 2e Boer-
haavestraat 49 Amsterdam, The Netherlands.

Arenas, A., and A. Dı́az-Guilera, 2007, Eur. Phys. J. Special
Topics 143, 19.

Arenas, A., A. Dı́az-Guilera, and C. J. Pérez-Vicente, 2006,
Phys. Rev. Lett. 96(11), 114102.

Arenas, A., J. Duch, A. Fernández, and S. Gómez, 2007, New
J. Phys. 9, 176.

Arenas, A., A. Fernández, S. Fortunato, and S. Gómez, 2008a,
J. Phys. A 41(22), 224001.

Arenas, A., A. Fernández, and S. Gómez, 2008b, New J. Phys.
10(5), 053039.

www.manaraa.com

84

Asahiro, Y., R. Hassin, and K. Iwama, 2002, Discrete Appl.
Math. 121(1-3), 15.

Baeza-Yates, R., and B. Ribeiro-Neto, 1999, Modern Infor-
mation Retrieval (Addison Wesley, Boston, USA).

Bagrow, J. P., 2008, J. Stat. Mech. P05001.
Bagrow, J. P., and E. M. Bollt, 2005, Phys. Rev. E 72(4),

046108.
Balakrishnan, V. K., 1997, Schaum’s Outline of Graph Theory

(McGraw-Hill, New York, USA).
Bansal, N., A. Blum, and S. Chawla, 2004, Mach. Learn.

56(1-3), 89.
Barabási, A.-L., and R. Albert, 1999, Science 286, 509.
Barahona, M., and L. M. Pecora, 2002, Phys. Rev. Lett.

89(5), 054101.
Barber, M. J., 2007, Phys. Rev. E 76(6), 066102.
Barber, M. J., M. Faria, L. Streit, and O. Strogan, 2008, in

Stochastic and Quantum Dynamics of Biomolecular Sys-
tems, edited by C. C. Bernido and M. V. Carpio-Bernido
(American Institute of Physics, Melville, USA), volume
1021 of American Institute of Physics Conference Series,
pp. 171–182.

Barnes, E. R., 1982, SIAM J. Alg. Discr. Meth. 3, 541.
Barrat, A., M. Barthelemy, R. Pastor-Satorras, and

A. Vespignani, 2004, Proc. Natl. Acad. Sci. USA 101(11),
3747.

Barrat, A., M. Barthelemy, and A. Vespignani, 2008, Dynam-
ical processes on complex networks (Cambridge University
Press, Cambridge, UK).

Batagelj, V., and M. Zaversnik, 2003, eprint cs.DS/0310049.
Baumes, J., M. Goldberg, and M. Magdon-ismail, 2005a, in

IEEE International Conference on Intelligence and Secu-
rity Informatics (ISI), pp. 27–36.

Baumes, J., M. K. Goldberg, M. S. Krishnamoorthy, M. M.
Ismail, and N. Preston, 2005b, in IADIS AC, edited by
N. Guimaraes and P. T. Isaias (IADIS), pp. 97–104.

Beal, M. J., 2003, Variational Algorithms for Approximate
Bayesian Inference, Ph.D. thesis, Gatsby Computational
Neuroscience Unit, University College London.

Berg, J., and M. Lässig, 2006, Proc. Natl. Acad. Sci. USA
103(29), 10967.

Berry, J. W., B. Hendrickson, R. A. LaViolette, V. J. Leung,
and C. A. Phillips, 2007, eprint arXiv:0710.3800.

Bezdek, J. C., 1981, Pattern Recognition with Fuzzy Objective
Function Algorithms (Kluwer Academic Publishers, Nor-
well, USA).

Bianconi, G., 2008, Europhys. Lett. 81, 28005.
Bianconi, G., A. C. C. Coolen, and C. J. Perez Vicente, 2008a,

Phys. Rev. E 78(1), 016114.
Bianconi, G., P. Pin, and M. Marsili, 2008b, eprint

arXiv:0810.4412.
Biernacki, C., G. Celeux, and G. Govaert, 2000, IEEE Trans.

Pattern Anal. Mach. Intell. 22(7), 719.
Blatt, M., S. Wiseman, and E. Domany, 1996, Phys. Rev.

Lett. 76, 3251.
Blondel, V. D., J.-L. Guillaume, R. Lambiotte, and E. Lefeb-

vre, 2008, Journal of Statistical Mechanics: Theory and
Experiment 2008(10), P10008 (12pp).

Boccaletti, S., M. Ivanchenko, V. Latora, A. Pluchino, and
A. Rapisarda, 2007, Phys. Rev. E 75(4), 045102.

Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D. U.
Hwang, 2006, Phys. Rep. 424(4-5), 175.

Boettcher, S., and A. G. Percus, 2001, Phys. Rev. Lett. 86,
5211.

Bollobas, B., 1998, Modern Graph Theory (Springer Verlag,

New York, USA).
Bomze, I. M., M. Budinich, P. M. Pardalos, and M. Pelillo,

1999, in Handbook of Combinatorial Optimization, edited
by D.-Z. Du and P. Pardalos (Kluwer Academic Publishers,
Norwell, USA), pp. 1–74.

Bonanno, G., G. Caldarelli, F. Lillo, and R. N. Mantegna,
2003, Phys. Rev. E 68(4), 046130.

Bonanno, G., N. Vandewalle, and R. N. Mantegna, 2000,
Phys. Rev. E 62(6), R7615.

Borgatti, S., M. Everett, and P. Shirey, 1990, Soc. Netw. 12,
337.

Brandes, U., 2001, J. Math. Sociol. 25, 163.
Brandes, U., D. Delling, M. Gaertler, R. Görke, M. Hoefer,

Z. Nikolski, and D. Wagner, 2006, URL http://digbib.

ubka.uni-karlsruhe.de/volltexte/documents/3255.
Brandes, U., M. Gaertler, and D. Wagner, 2003, in Proceed-

ings of ESA (Springer-Verlag, Berlin, Germany), pp. 568–
579.

Brin, S., and L. E. Page, 1998, Comput. Networks ISDN 30,
107.

Bron, C., and J. Kerbosch, 1973, Commun. ACM 16, 575.
Burnham, K. P., and D. R. Anderson, 2002, Model Selec-

tion and Multimodel Inference: A Practical Information-
Theoretic Approach (Springer, New York, USA).

Burt, R. S., 1976, Soc. Forces 55, 93.
C. Castellano, F. Cecconi, V. Loreto, D. Parisi, and F. Radic-

chi, 2004, Eur. Phys. J. B 38(2), 311.
Capocci, A., V. D. P. Servedio, G. Caldarelli, and F. Colaiori,

2005, Physica A 352, 669.
Chan, P. K., M. D. F. Schlag, and J. Y. Zien, 1993, in Pro-

ceedings of the 30th International Conference on Design
Automation (ACM Press, New York, USA), pp. 749–754.

Chen, J., and B. Yuan, 2006, Bioinformatics 22(18), 2283.
Chen, W. Y. C., A. W. M. Dress, and W. Q. Yu, 2008, Math.

Comp. Sci. 1(3), 441.
Chung, F. R. K., 1997, Spectral Graph Theory (American

Mathematical Society, Providence, USA).
Clauset, A., 2005, Phys. Rev. E 72(2), 026132.
Clauset, A., C. Moore, and M. E. J. Newman, 2007, in Sta-

tistical Network Analysis: Models, Issues, and New Direc-
tions, edited by E. M. Airoldi, D. M. Blei, S. E. Fienberg,
A. Goldenberg, E. P. Xing, and A. X. Zheng (Springer,
Berlin, Germany), volume 4503 of Lect. Notes Comp. Sci.,
pp. 1–13.

Clauset, A., C. Moore, and M. E. J. Newman, 2008, Nature
453(7191), 98.

Clauset, A., M. E. Newman, and C. Moore, 2004, Phys. Rev.
E 70(6), 066111.

Cohen, R., K. Erez, D. ben Avraham, and S. Havlin, 2000,
Phys. Rev. Lett. 85(21), 4626.

Coleman, J. S., 1964, An Introduction to Mathematical Soci-
ology (Collier-Macmillan, London, UK).

Condon, A., and R. M. Karp, 2001, Random Struct. Algor.
18, 116.

da Fontoura Costa, L., 2004, eprint arXiv:cond-mat/0405022.
Danon, L., A. Dı́az-Guilera, and A. Arenas, 2006, J. Stat.

Mech. 11, 10.
Danon, L., A. Dı́az-Guilera, J. Duch, and A. Arenas, 2005, J.

Stat. Mech. 9, 8.
Danon, L., J. Duch, A. Arenas, and A. Dı́az-Guilera, 2007,

in Large Scale Structure and Dynamics of Complex Net-
works: From Information Technology to Finance and Nat-
ural Science, edited by C. G. and V. A. (World Scientific,
Singapore), pp. 93–114.

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3255
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3255

www.manaraa.com

85

Davis, A., B. B. Gardner, and M. R. Gardner, 1941, Deep
South (University of Chicago Press, Chicago, USA).

Delling, D., M. Gaertler, R. Grke, Z. Nikoloski, and D. Wag-
ner, 2007, How to Evaluate Clustering Techniques., Tech-
nical Report, Universität Karlsruhe, Germany.

Delvenne, J. C., S. N. Yaliraki, and M. Barahona, 2008, eprint
arXiv/0812.1811.

Demmel, J., J. Dongarra, A. Ruhe, and H. van der Vorst,
2000, Templates for the solution of algebraic eigenvalue
problems: a practical guide (Society for Industrial and Ap-
plied Mathematics, Philadelphia, USA).

Dempster, A. P., N. M. Laird, and D. B. Rdin, 1977, J. Roy.
Stat. Soc. B 39, 1.

Derényi, I., G. Palla, and T. Vicsek, 2005, Phys. Rev. Lett.
94(16), 160202.

Djidjev, H., 2006, in WAW, edited by W. Aiello, A. Z. Broder,
J. C. M. Janssen, and E. E. Milios (Springer-Verlag, Berlin,
Germany), volume 4936 of Lecture Notes in Computer Sci-
ence, pp. 117–128.

Donetti, L., and M. A. Muñoz, 2004, J. Stat. Mech. P10012.
Donetti, L., and M. A. Muñoz, 2005, in Modeling Coopera-

tive Behavior in the Social Sciences, edited by P. Garrido,
J. Maroo, and M. A. Muñoz, volume 779 of American In-
stitute of Physics Conference Series, pp. 104–107.

van Dongen, S., 2000a, Graph Clustering by Flow Simula-
tion, Ph.D. thesis, Dutch National Research Institute for
Mathematics and Computer Science, University of Utrecht,
Netherlands.

van Dongen, S., 2000b, Performance criteria for graph clus-
tering and Markov cluster experiments, Technical Report,
National Research Institute for Mathematicas and Com-
puter Science in the Nederlands, Amsterdam, The Nether-
lands.

Doreian, P., V. Batagelj, and A. Ferligoj, 2005, Generalized
Blockmodeling (Cambridge University Press, New York,
USA).

Dorogovtsev, S. N., and J. F. F. Mendes, 2002, Adv. Phys.
51, 1079.

Du, H., M. W. Feldman, S. Li, and X. Jin, 2007, Complexity
12(3), 53.

Du, N., B. Wu, B. Wang, and Y. Wang, 2008, eprint
arXiv:0804.3636.

Duch, J., and A. Arenas, 2005, Phys. Rev. E 72(2), 027104.
Dunn, J. C., 1973, J. Cybernetics 3, 32.
Dunn, R., F. Dudbridge, and C. M. Sanderson, 2005, BMC

Bioinf. 6, 39.
Earl, D. J., and M. W. Deem, 2005, Phys. Chem. Chem. Phys.

7, 3910.
Eckmann, J.-P., and E. Moses, 2002, Proc. Natl. Acad. Sci.

USA 99, 5825.
Efron, B., and R. J. Tibshirani, 1993, An Introduction to the

Bootstrap (Chapman & Hall, New York, USA).
Elias, P., A. Feinstein, and C. E. Shannon, 1956, IRE Trans.

Inf. Theory IT-2, 117.
Erdös, P., and A. Rényi, 1959, Publ. Math. Debrecen 6, 290.
Eriksen, K. A., I. Simonsen, S. Maslov, and K. Sneppen, 2003,

Phys. Rev. Lett. 90(14), 148701.
Euler, L., 1736, Commentarii Academiae Petropolitanae 8,

128.
Evans, T. S., and R. Lambiotte, 2009, eprint arXiv:0903.2181.
Everett, M. G., and S. P. Borgatti, 1994, J. Math. Soc. 19(1),

29.
Everett, M. G., and S. P. Borgatti, 1998, Connections 21(1),

49.

Fan, Y., M. Li, P. Zhang, J. Wu, and Z. Di, 2007, Physica A
377, 363.

Farkas, I., D. Ábel, G. Palla, and T. Vicsek, 2007, New J.
Phys. 9, 180.

Farutin, V., K. Robison, E. Lightcap, V. Dancik, A. Rutten-
berg, S. Letovsky, and J. Pradines, 2006, Proteins 62(3),
800.

Feige, U., D. Peleg, and G. Kortsarz, 2001, Algorithmica
29(3), 410.

Fenn, D. J., M. A. Porter, M. McDonald, S. Williams, N. F.
Johnson, and N. S. Jones, 2008, eprint arXiv:0811.3988.

Fiedler, M., 1973, Czechoslovak Math. J. 23(98), 298.
Fiedler, M., 1975, Czechoslovak Math. J. 25, 619.
Fienberg, S. E., and S. Wasserman, 1981, Sociol. Methodol.

12, 156.
Flake, G. W., S. Lawrence, and C. L. Giles, 2000, in Sixth

ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (ACM Press, Boston, USA),
pp. 150–160.

Flake, G. W., S. Lawrence, C. Lee Giles, and F. M. Coetzee,
2002, IEEE Computer 35, 66.

F.Lorrain, and H. White, 1971, J. Math. Sociol. 1, 49.
Ford, L. R., and D. R. Fulkerson, 1956, Canadian J. Math. 8,

399.
Fortunato, S., 2007, in Noise and Stochastics in Complex Sys-

tems and Finance, volume 6601 of SPIE Conference Series,
p. 660108.

Fortunato, S., and M. Barthélemy, 2007, Proc. Natl. Acad.
Sci. USA 104, 36.

Fortunato, S., and C. Castellano, 2009, in Encyclopedia
of Complexity and Systems Science, edited by R. A.
Meyers (Springer, Berlin, Germany), volume 1, eprint
arXiv:0712.2716.

Fortunato, S., V. Latora, and M. Marchiori, 2004, Phys. Rev.
E 70(5), 056104.

Fowlkes, E. B., and C. L. Mallows, 1983, J. Am. Stat. Assoc.
78, 553.

Freeman, L. C., 1977, Sociometry 40, 35.
Freeman, L. C., 2004, The Development of Social Network

Analysis: A Study in the Sociology of Science (BookSurge
Publishing).

Fu, Y., and P. Anderson, 1986, J. Phys. A 19, 1605.
G. Xu, S. Tsoka, and L.G. Papageorgiou, 2007, Eur. Phys. J.

B 60(2), 231.
Gaertler, M., R. Grke, and D. Wagner, 2007, in AAIM, edited

by M.-Y. Kao and X.-Y. Li (Springer, Berlin, Germany),
volume 4508 of Lecture Notes in Computer Science, pp.
11–26.

Gallager, R. G., 1963, Low density parity check codes (MIT
Press, Cambridge, USA).

Gan, G., C. Ma, and J. Wu, 2007, Data Clustering: Theory,
Algorithms, and Applications (ASA-SIAM Series on Statis-
tics and Applied Probability) (Society for Industrial and Ap-
plied Mathematics, Philadelphia, USA), ISBN 0898716233.

Garey, M. R., and D. S. Johnson, 1990, Computers and In-
tractability : A Guide to the Theory of NP-Completeness
(W. H. Freeman & Co., New York, USA).

Gfeller, D., J.-C. Chappelier, and P. de Los Rios, 2005, Phys.
Rev. E 72(5), 056135.

Giles, C. L., K. Bollacker, and S. Lawrence, 1998, in Digital
Libraries 98 - The Third ACM Conference on Digital Li-
braries, edited by I. Witten, R. Akscyn, and F. M. Shipman
III (ACM Press, Pittsburgh, PA), pp. 89–98.

Girvan, M., and M. E. Newman, 2002, Proc. Natl. Acad. Sci.

www.manaraa.com

86

USA 99(12), 7821.
Gleiser, P., and L. Danon, 2003, Adv. Complex Syst. 6, 565.
Glover, F., 1986, Comput. Oper. Res. 13(5), 533.
Goldberg, A. V., and R. E. Tarjan, 1988, Journal of the ACM

35, 921.
Gómez, S., P. Jensen, and A. Arenas, 2008, eprint

arXiv:0812.3030.
Granovetter, M., 1973, Am. J. Sociol. 78, 1360.
Gregory, S., 2007, in Proceedings of the 11th European Con-

ference on Principles and Practice of Knowledge Discovery
in Databases (PKDD 2007) (Springer-Verlag, Berlin, Ger-
many), pp. 91–102.

Gregory, S., 2009, in Complex Networks, edited by S. Fortu-
nato, R. Menezes, G. Mangioni, and V. Nicosia (Springer,
Berlin, Germany), volume 207 of Studies on Computational
Intelligence, pp. 47–62.

Grünwald, P. D., I. J. Myung, and M. A. Pitt, 2005, Advances
in Minimum Description Length: Theory and Applications
(MIT Press, Cambridge, USA).

Gudkov, V., V. Montealegre, S. Nussinov, and Z. Nussinov,
2008, Phys. Rev. E 78(1), 016113.

Guimerà, R., and L. A. N. Amaral, 2005, J. Stat. Mech.
P02001(02).

Guimerà, R., and L. A. N. Amaral, 2005, Nature 433, 895.
Guimerà, R., L. Danon, A. Dı́az-Guilera, F. Giralt, and

A. Arenas, 2003, Phys. Rev. E 68(6), 065103.
Guimerà, R., M. Sales-Pardo, and L. Amaral, 2007, Bioinfor-

matics 23(13), 1616.
Guimerà, R., M. Sales-Pardo, and L. A. Amaral, 2004, Phys.

Rev. E 70(2), 025101.
Guimerà, R., M. Sales-Pardo, and L. A. N. Amaral, 2007,

Phys. Rev. E 76(3), 036102.
Gusfield, D., 2002, Inform. Process. Lett. 82(3), 159.
Gustafsson, M., M. Hörnquist, and A. Lombardi, 2006, Phys-

ica A 367, 559.
Hagen, L., and A. B. Kahng, 1992, IEEE Trans. Comput.

Aided Des. Integr. Circuits Syst. 11(9), 1074.
Handcock, M. S., A. E. Raftery, and J. M. Tantrum, 2007, J.

Roy. Stat. Soc. A 170(Working Paper no. 46), 1.
Hastie, T., R. Tibshirani, and J. H. Friedman, 2001, The Ele-

ments of Statistical Learning (Springer, Berlin, Germany),
ISBN 0387952845.

Hastings, M. B., 2006, Phys. Rev. E 74(3), 035102.
Heimo, T., J. M. Kumpula, K. Kaski, and J. Saramäki, 2008,

J. Stat. Mech. P08007.
Hillier, F. S., and G. J. Lieberman, 2004, MP Introduction to

Operations Research (McGraw-Hill, New York, USA).
Hofman, J. M., and C. H. Wiggins, 2008, Phys. Rev. Lett.

100(25), 258701.
Holland, J. H., 1992, Adaptation in natural and artificial sys-

tems (MIT Press, Cambridge, USA), ISBN 0262581116.
Holland, P., K. B. Laskey, and S. Leinhardt, 1983, Soc. Netw.

5, 109.
Holme, P., M. Huss, and H. Jeong, 2003, Bioinformatics

19(4), 532.
Holzapfel, K., S. Kosub, M. G. Maa, and H. Täubig, 2003, in

CIAC, edited by R. Petreschi, G. Persiano, and R. Silvestri
(Springer), volume 2653 of Lecture Notes in Computer Sci-
ence, pp. 201–212.

Homans, G. C., 1950, The Human Groups (Harcourt, Brace
& Co., New York).

Hopcroft, J., O. Khan, B. Kulis, and B. Selman, 2004, Proc.
Natl. Acad. Sci. USA 101, 5249.

Hu, Y., H. Chen, P. Zhang, M. Li, Z. Di, and Y. Fan, 2008,

Phys. Rev. E 78(2), 026121.
Hu, Y., M. Li, P. Zhang, Y. Fan, and Z. Di, 2008, Phys. Rev.

E 78(1), 016115.
Huffman, D. A., 1952, Proc. IRE 40(9), 1098.
Hughes, B. D., 1995, Random Walks and Random Environ-

ments: Random Walks Vol 1 (Clarendon Press, Oxford,
UK), ISBN 0198537883.

Itzkovitz, S., R. Levitt, N. Kashtan, R. Milo, M. Itzkovitz,
and U. Alon, 2005, Phys. Rev. E 71(1), 016127.

Jin, R. K.-X., D. C. Parkes, and P. J. Wolfe, 2007, in Proc.
AAAI Workshop on Plan, Activity and Intent Recognition
(PAIR), pp. 66–73.

Jonsson, P. F., T. Cavanna, D. Zicha, and P. A. Bates, 2006,
BMC Bioinf. 7, 2.

Jordan, M. I., Z. Ghahramani, T. Jaakkola, and L. K. Saul,
1999, Mach. Learn. 37(2), 183.

Junker, B. H., and F. Schreiber, 2008, Analysis of Biological
Networks (Wiley-Interscience, New York, USA).

Kaplan, T. D., and S. Forrest, 2008, eprint arXiv:0801.3290.
Karloff, H., 1991, Linear Programming (Birkhäuser Verlag,

Basel, Switzerland).
Karrer, B., E. Levina, and M. E. J. Newman, 2008, Phys.

Rev. E 77(4), 046119.
Kernighan, B. W., and S. Lin, 1970, Bell System Tech. J. 49,

291.
Kim, Y., S.-W. Son, and H. Jeong, 2009, eprint

arXiv:0902.3728.
Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, 1983, Science

220, 671.
Kleinberg, J., 2002, in Advances in NIPS 15 (MIT Press,

Boston, USA), pp. 446–453.
Koskinen, J. H., and T. A. B. Snijders, 2007, J. Stat. Plan.

Infer. 137(12), 3930.
Kottak, C. P., 2004, Cultural Anthropology (McGraw-Hill,

New York, USA).
Krause, A. E., K. A. Frank, D. M. Mason, R. E. Ulanowicz,

and W. W. Taylor, 2003, Nature 426, 282.
Krawczyk, M. J., 2008, Phys. Rev. E 77(6), 065701.
Krawczyk, M. J., and K. Kulakowski, 2007, eprint

arXiv:0709.0923.
Kumpula, J. M., M. Kivelä, K. Kaski, and J. Saramäki, 2008,

Phys. Rev. E 78(2), 026109.
Kumpula, J. M., J. Saramäki, K. Kaski, and J. Kertész,

2007a, in Noise and Stochastics in Complex Systems and
Finance, volume 6601 of SPIE Conference Series, p.
660116.

Kumpula, J. M., J. Saramäki, K. Kaski, and J. Kertész,
2007b, Eur. Phys. J. B 56, 41.

Kuramoto, Y., 1984, Chemical Oscillations, Waves and Tur-
bulence (Springer-Verlag, Berlin, Germany).

Lambiotte, R., J. . Delvenne, and M. Barahona, 2008, eprint
arXiv:0812.1770.

Lancichinetti, A., and S. Fortunato, 2009, eprint
arXiv:0904.3940.

Lancichinetti, A., S. Fortunato, and J. Kertesz, 2009, New J.
Phys. 11(3), 033015.

Lancichinetti, A., S. Fortunato, and F. Radicchi, 2008, Phys.
Rev. E 78(4), 046110.

Lanczos, C., 1950, J. Res. Natl. Bur. Stand. 45, 255.
Latapy, M., and P. Pons, 2005, Lect. Notes Comp. Sci. 3733,

284.
Latora, V., and M. Marchiori, 2001, Phys. Rev. Lett. 87(19),

198701.
Lehmann, S., and L. K. Hansen, 2007, Eur. Phys. J. B 60,

www.manaraa.com

87

83.
Lehmann, S., M. Schwartz, and L. K. Hansen, 2008, Phys.

Rev. E 78(1), 016108.
Leicht, E. A., and M. E. J. Newman, 2008, Phys. Rev. Lett.

100(11), 118703.
Li, Z., S. Zhang, R.-S. Wang, X.-S. Zhang, and L. Chen, 2008,

Phys. Rev. E 77(3), 036109.
Liben-Nowell, D., and J. Kleinberg, 2003, in CIKM ’03: Pro-

ceedings of the twelfth international conference on Informa-
tion and knowledge management (ACM, New York, NY,
USA), pp. 556–559.

Lloyd, S., 1982, IEEE Trans. Inf. Theory 28(2), 129.
Luccio, F., and M. Sami, 1969, IEEE Trans. Circuit Th. CT

16, 184.
Luce, R. D., 1950, Psychometrika 15(2), 169.
Luce, R. D., and A. D. Perry, 1949, Psychometrika 14(2), 95.
 Luczak, T., 1992, in Proceedings of the Symposium on Ran-

dom Graphs, Poznań 1989 (John Wiley & Sons, New York,
USA), pp. 165–182.

Lusseau, D., 2003, Proc. Royal Soc. London B 270, S186.
Mackay, D. J. C., 2003, Information Theory, Inference, and

Learning Algorithms (Cambridge University Press, Cam-
bridge, UK).

MacQueen, J. B., 1967, in Proc. of the fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, edited
by L. M. L. Cam and J. Neyman (University of California
Press, Berkeley, USA), volume 1, pp. 281–297.

Mantegna, R. N., 1999, Eur. Phys. J. B 11, 193.
Mantegna, R. N., and H. E. Stanley, 2000, An introduction to

econophysics: correlations and complexity in finance (Cam-
bridge University Press, New York, USA).

Massen, C. P., and J. P. Doye, 2005, Phys. Rev. E 71(4),
046101.

Massen, C. P., and J. P. K. Doye, 2006, eprint cond-
mat/0610077.

Matsuda, H., T. Ishihara, and A. Hashimoto, 1999, Theor.
Comp. Sci. 210, 305.

Matula, D. W., and F. Shahrokhi, 1990, Discrete Appl. Math.
27(1-2), 113.

Medus, A., G. Acuña, and C. O. Dorso, 2005, Physica A 358,
593.

Meilă, M., 2007, J. Multivar. Anal. 98(5), 873.
Meilă, M., and D. Heckerman, 2001, Mach. Learn. 42(1), 9.
Mendes, J. F. F., and S. N. Dorogovtsev, 2003, Evolution of

Networks: from biological nets to the Internet and WWW
(Oxford University Press, Oxford, UK).

Mézard, M., and G. Parisi, 2003, J. Stat. Phys. 111, 1.
Mezard, M., G. Parisi, and M. Virasoro, 1987, Spin glass

theory and beyond (World Scientific Publishing Company,
Singapore).

Middleton, A. A., and D. S. Fisher, 2002, Phys. Rev. B
65(13), 134411.

Milgram, S., 1967, Psychol. Today 2, 60.
Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, 2002, Science 298(5594), 824.
Mirkin, B., 1996, Mathematical classification and clustering

(Kluwer Academic Press, Norwell, USA).
Mokken, R. J., 1979, Qual. Quant. 13(2), 161.
Molloy, M., and B. Reed, 1995, Random Struct. Algor. 6, 161.
Moody, J., and D. R. White, 2003, Am. Sociol. Rev. 68(1),

103.
Muff, S., F. Rao, and A. Caflisch, 2005, Phys. Rev. E 72(5),

056107.
Mungan, M., and J. J. Ramasco, 2008, eprint

arXiv:0809.1398.
Nelson, D. L., C. L. McEvoy, and T. A. Schreiber, 1998, The

university of south florida word association, rhyme, and
word fragment norms.

Nepusz, T., A. Petróczi, L. Négyessy, and F. Bazsó, 2008,
Phys. Rev. E 77(1), 016107.

Newman, M. E. J., 2001, Proc. Nat. Acad. Sci. USA 98(2),
404.

Newman, M. E. J., 2003, SIAM Rev. 45(2), 167.
Newman, M. E. J., 2004, Phys. Rev. E 70(5), 056131.
Newman, M. E. J., 2004a, Eur. Phys. J. B 38, 321.
Newman, M. E. J., 2004b, Phys. Rev. E 69(6), 066133.
Newman, M. E. J., 2005, Soc. Netw. 27, 39.
Newman, M. E. J., 2006a, Phys. Rev. E 74(3), 036104.
Newman, M. E. J., 2006b, Proc. Natl. Acad. Sci. USA 103,

8577.
Newman, M. E. J., and T. Barkema, 1999, Monte Carlo Meth-

ods in Statistical Physics (Oxford University Press, Oxford,
UK).

Newman, M. E. J., and M. Girvan, 2004, Phys. Rev. E 69(2),
026113.

Newman, M. E. J., and E. A. Leicht, 2007, Proc. Natl. Acad.
Sci. USA 104, 9564.

Nicosia, V., G. Mangioni, V. Carchiolo, and M. Malgeri, 2009,
J. Stat. Mech. 2009(03), P03024.

Nishikawa, T., A. E. Motter, Y.-C. Lai, and F. C. Hoppen-
steadt, 2003, Phys. Rev. Lett. 91(1), 014101.

Noack, A., 2009, Phys. Rev. E 79(2), 026102.
Noack, A., and R. Rotta, 2008, eprint arXiv:0812.4073.
Noh, J. D., and H. Rieger, 2001, Phys. Rev. Lett. 87(17),

176102.
Noh, J. D., and H. Rieger, 2002, Phys. Rev. E 66(3), 036117.
Nowicki, K., and T. A. B. Snijders, 2001, J. Am. Stat. Assoc.

96(455).
Ohkubo, J., and K. Tanaka, 2006, J. Phys. Soc. Jpn. 75(11),

115001.
Onnela, J.-P., A. Chakraborti, K. Kaski, J. Kertész, and

A. Kanto, 2003, Phys. Rev. E 68(5), 056110.
Onnela, J.-P., A. Chakraborti, K. Kaski, and J. Kertiész,

2002, Eur. Phys. J. B 30(3), 285.
Palla, G., A.-L. Barabási, and T. Vicsek, 2007, Nature 446,

664.
Palla, G., I. Derényi, I. Farkas, and T. Vicsek, 2005, Nature

435, 814.
Papadimitriou, C. M., 1994, Computational complexity

(Addison-Wesley, Reading, USA).
Pastor-Satorras, R., and A. Vespignani, 2001, Phys. Rev.

Lett. 86(14), 3200.
Pastor-Satorras, R., and A. Vespignani, 2004, Evolution and

Structure of the Internet: A Statistical Physics Approach
(Cambridge University Press, New York, NY, USA).

Peeters, R., 2003, Discrete Appl. Math. 131, 651.
Peterson, C., and J. R. Anderson, 1987, Compl. Syst. 1, 995.
Pikovsky, A., M. G. Rosenblum, and J. Kurths, 2001, Syn-

chronization : A Universal Concept in Nonlinear Sciences
(Cambridge University Press, Cambridge, UK).

Pimm, S. L., 1979, Theor. Popul. Biol. 16, 144.
Pinney, J. W., and D. R. Westhead, 2006, in Interdisci-

plinary Statistics and Bioinformatics (Leeds University
Press, Leeds, UK), pp. 87–90.

Pluchino, A., V. Latora, and A. Rapisarda, 2005, Int. J. Mod.
Phys. C 16, 515.

Pollner, P., G. Palla, and T. Vicsek, 2006, Europhys. Lett.
73, 478.

www.manaraa.com

88

Pons, P., 2006, eprint arXiv:cs/0608050.
Porter, M. A., P. J. Mucha, M. E. J. Newman, and A. J.

Friend, 2007, Physica A 386, 414.
Porter, M. A., P. J. Mucha, M. E. J. Newman, and C. M.

Warmbrand, 2005, Proc. Natl. Acad. Sci. USA 102, 7057.
Porter, M. A., J.-P. Onnela, and P. J. Mucha, 2009, eprint

arXiv:0902.3788.
Pothen, A., 1997, Graph Partitioning Algorithms with Appli-

cations to Scientific Computing, Technical Report, Norfolk,
VA, USA.

Price, D. D., 1976, J. Am. Soc. Inform. Sci. 27(5), 292.
Pujol, J. M., J. Béjar, and J. Delgado, 2006, Phys. Rev. E

74(1), 016107.
Radicchi, F., C. Castellano, F. Cecconi, V. Loreto, and

D. Parisi, 2004, Proc. Natl. Acad. Sci. USA 101, 2658.
Raghavan, U. N., R. Albert, and S. Kumara, 2007, Phys. Rev.

E 76(3), 036106.
Ramasco, J. J., and M. Mungan, 2008, Phys. Rev. E 77(3),

036122.
Rand, W. M., 1971, J. Am. Stat. Assoc. 66(336), 846.
Ravasz, E., and A.-L. Barabási, 2003, Phys. Rev. E 67(2),

026112.
Ravasz, E., A. L. Somera, D. A. Mongru, Z. N. Oltvai, and

A.-L. Barabási, 2002, Science 297(5586), 1551.
Reichardt, J., and S. Bornholdt, 2004, Phys. Rev. Lett.

93(21), 218701.
Reichardt, J., and S. Bornholdt, 2006a, Phys. Rev. E 74(1),

016110.
Reichardt, J., and S. Bornholdt, 2006b, Physica D 224, 20.
Reichardt, J., and S. Bornholdt, 2007, J. Stat. Mech.

2007(06), P06016.
Reichardt, J., and S. Bornholdt, 2007, Phys. Rev. E 76(1),

015102.
Reichardt, J., and M. Leone, 2008, Phys. Rev. Lett. 101(7),

078701.
Reichardt, J., and D. R. White, 2007, Eur. Phys. J. B 60,

217.
Ren, W., G. Yan, X. Liao, and Y. Cheng, 2007, eprint

arXiv:0710.3422.
Rhodes, C. J., and E. M. J. Keefe, 2007, J. Oper. Res. Soc.

58(12), 1605.
Rice, S. A., 1927, Am. Polit. Sci. Rev. 21, 619.
Richardson, T., P. J. Mucha, and M. A. Porter, 2008, eprint

arXiv:0812.2852.
Rissanen, J., 1978, Automatica 14, 465.
Rives, A. W., and T. Galitski, 2003, Proc. Natl. Acad. Sci.

USA 100(3), 1128.
Ronhovde, P., and Z. Nussinov, 2008a, eprint

arXiv:0803.2548.
Ronhovde, P., and Z. Nussinov, 2008b, eprint

arXiv:0812.1072.
Rosvall, M., and C. T. Bergstrom, 2007, Proc. Natl. Acad.

Sci. USA 104, 7327.
Rosvall, M., and C. T. Bergstrom, 2008, eprint

arXiv/0812.1242.
Rosvall, M., and C. T. Bergstrom, 2008, Proc. Natl. Acad.

Sci. USA 105, 1118.
Rowicka, M., and A. Kudlicki, 2004, in Bayesian Inference

and Maximum Entropy Methods in Science and Engineer-
ing: 24th International Workshop on Bayesian Inference
and Maximum Entropy Methods in Science and Engineer-
ing, edited by R. Fischer, R. Preuss, and U. von Tous-
saint (American Institute of Physics, Melville, USA), vol-
ume 735, pp. 283–288.

Ruan, J., and W. Zhang, 2008, Phys. Rev. E 77(1), 016104.
S.-W. Son, H. Jeong, and J.D. Noh, 2006, Eur. Phys. J. B

50(3), 431.
Sales-Pardo, M., R. Guimerà, A. A. Moreira, and L. A. N.

Amaral, 2007, Proc. Natl. Acad. Sci. USA 104, 15224.
Sawardecker, E. N., M. Sales-Pardo, and L. A. N. Amaral,

2009, Eur. Phys. J. B 67, 277.
Schaeffer, S. E., 2007, Comput. Sci. Rev. 1(1), 27.
Schuetz, P., and A. Caflisch, 2008a, Phys. Rev. E 77(4),

046112.
Schuetz, P., and A. Caflisch, 2008b, Phys. Rev. E 78(2),

026112.
Schwarz, G., 1978, Ann. Stat. 6(2), 461.
Scott, J., 2000, Social Network Analysis: A Handbook (SAGE

Publications, London, UK).
Seidman, S. B., 1983, Soc. Netw. 5, 269.
Seidman, S. B., and B. L. Foster, 1978, J. Math. Sociol. 6,

139.
Sen, T. Z., A. Kloczkowski, and R. L. Jernigan, 2006, BMC

Bioinf. 7(1), 355.
Shen, H., X. Cheng, K. Cai, and M.-B. Hu, 2009, Physica A

388, 1706.
Sherrington, D., and S. Kirkpatrick, 1975, Phys. Rev. Lett.

35, 1792.
Š́ıma, J., and S. E. Schaeffer, 2006, in Proceedings of the

Thirty-second International Conference on Current Trends
in Theory and Practice of Computer Science (Sofsem 06),
edited by J. Wiedermann, G. Tel, J. Pokorný, M. Bieliková,
and J. Štuller (Springer-Verlag, Berlin/Heidelberg, Ger-
many), volume 3831 of Lecture Notes in Computer Science,
pp. 530–537.

Simon, H., 1962, Proc. Am. Phil. Soc. 106(6), 467.
Simon, H. A., 1955, Biometrika 42, 425.
Simonsen, I., 2005, Physica A 357(2), 317.
Simonsen, I., K. Astrup Eriksen, S. Maslov, and K. Sneppen,

2004, Physica A 336, 163.
Slanina, F., and Y.-C. Zhang, 2005, Acta Phys. Pol. B 36,

2797.
Snijders, T., and K. Nowicki, 1997, J. Classif. 14, 75.
de Solla Price, D. J., 1965, Science 169, 510.
Solomonoff, R., and A. Rapoport, 1951, Bull. Math. Biophys.

13, 107.
Spirin, V., and L. A. Mirny, 2003, Proc. Natl. Acad. Sci. USA

100(21), 12123.
Stanley, R. P., 1997, Enumerative combinatorics, Vol. I

(Cambridge University Press, Cambridge, UK).
Suaris, P. R., and G. Kedem, 1988, IEEE Trans. Circuits Syst.

35, 294.
Sun, J., C. Faloutsos, S. Papadimitriou, and P. S. Yu, 2007, in

KDD ’07: Proceedings of the 13th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining
(ACM, New York, USA), pp. 687–696.

Sun, Y., B. Danila, K. Josic, and K. E. Bassler, 2009, Euro-
phys. Lett. 86(2), 28004.

Tasgin, M., A. Herdagdelen, and H. Bingol, 2007, eprint
arXiv:0711.0491.

Tibély, G., and J. Kertész, 2008, Physica A 387, 4982.
Tishby, N., F. Pereira, and W. Bialek, 1999, in Proceedings of

the 37-th Annual Allerton Conference on Communication,
Control and Computing, pp. 368–377.

Traag, V. A., and J. Bruggeman, 2008, eprint
arXiv:0811.2329.

Traud, A. L., E. D. Kelsic, P. J. Mucha, and M. A. Porter,
2008, eprint arXiv:0809.0690.

www.manaraa.com

89

Travers, J., and S. Milgram, 1969, Sociometry 32, 425.
Tumminello, M., F. Lillo, and R. N. Mantegna, 2008, ArXiv

e-prints eprint 0809.4615.
Tyler, J. R., D. M. Wilkinson, and B. A. Huberman, 2003,

in Communities and technologies (Kluwer, B.V., Deventer,
The Netherlands), pp. 81–96.

Vazquez, A., 2008, eprint arXiv:0805.2689.
Vazquez, A., 2008, Phys. Rev. E 77(6), 066106.
Čopič, J., M. O. Jackson, and A. Kirman, 2005, URL http:

//www.hss.caltech.edu/∼{}jernej/netcommunity.pdf.
Vragović, I., and E. Louis, 2006, Phys. Rev. E 74(1), 016105.
Wakita, K., and T. Tsurumi, 2007, eprint arXiv:cs/0702048.
Wallace, C. S., and D. M. Boulton, 1968, The Computer Jour-

nal 11(2), 185.
Wallace, D. L., 1983, J. Am. Stat. Assoc. 78, 569.
Ward, J. H., 1963, J. Am. Stat. Assoc. 58(301), 236.
Wasserman, S., and K. Faust, 1994, Social network analysis

(Cambridge University Press, Cambridge, UK).
Watts, D., and S. Strogatz, 1998, Nature 393, 440.
Watts, D. J., 2003, Small Worlds : The Dynamics of Net-

works between Order and Randomness (Princeton Univer-
sity Press, Princeton, USA).

Wei, Y.-C., and C.-K. Cheng, 1989, in Proceedings of IEEE
International Conference on Computer Aided Design (In-
stitute of Electrical and Electronics Engineers, New York),
pp. 298–301.

Weiss, R. S., and E. Jacobson, 1955, Am. Sociol. Rev. 20,
661.

White, D. R., and K. P. Reitz, 1983, Soc. Netw. 5, 193.
White, S., and P. Smyth, 2005, in Proceedings of SIAM In-

ternational Conference on Data Mining, pp. 76–84.
Wilkinson, D. M., and B. A. Huberman, 2004, Proc. Natl.

Acad. Sci. U.S.A. 101(1073), 5241.
Williams, R. J., and N. D. Martinez, 2000, Nature 404, 180.
Winkler, R. L., 2003, Introduction to Bayesian Inference and

Decision (Probabilistic Publishing, Gainesville, USA).
Wu, F., and B. A. Huberman, 2004, Eur. Phys. J. B 38, 331.
Wu, F. Y., 1982, Rev. Mod. Phys. 54(1), 235.
Yuta, K., N. Ono, and Y. Fujiwara, 2007, eprint

arXiv:physics/0701168.
Zachary, W. W., 1977, J. Anthropol. Res. 33, 452.
Zanghi, H., C. Ambroise, and V. Miele, 2008, Pattern Recogn.

41(12), 3592.
Zarei, M., and K. A. Samani, 2009, Physica A 388, 1721.
Zhang, A., 2009, Protein Interaction Networks (Cambridge

University Press, Cambridge, UK).
Zhang, P., M. Li, J. Wu, Z. Di, and Y. Fan, 2006, Physica A

367, 577.
Zhang, P., J. Wang, X. Li, Z. Di, and Y. Fan, 2007, eprint

arXiv:0710.0117.
Zhang, S., R.-S. Wang, and X.-S. Zhang, 2007, Physica A

374, 483.
Zhang, Y., A. J. Friend, A. L. Traud, M. A. Porter, J. H.

Fowler, and P. J. Mucha, 2008, Physica A 387(7), 1705.
Zhou, H., 2003a, Phys. Rev. E 67(6), 061901.
Zhou, H., 2003b, Phys. Rev. E 67(4), 041908.
Zhou, H., and R. Lipowsky, 2004, Lect. Notes Comp. Sci.

3038, 1062.
Zhou, T., J.-G. Liu, and B.-H. Wang, 2006, Chin. Phys. Lett.

23, 2327.
Ziv, E., M. Middendorf, and C. H. Wiggins, 2005, Phys. Rev.

E 71(4), 046117.

http://www.hss.caltech.edu/~{}jernej/netcommunity.pdf
http://www.hss.caltech.edu/~{}jernej/netcommunity.pdf

	Contents
	Introduction
	Communities in real-world networks
	Elements of Community Detection
	Computational complexity
	Communities
	Basics
	Local definitions
	Global definitions
	Definitions based on vertex similarity

	Partitions
	Basics
	Quality functions: modularity

	Traditional methods
	Graph partitioning
	Hierarchical clustering
	Partitional clustering

	Divisive algorithms
	The algorithm of Girvan and Newman
	Other methods

	Modularity-based methods
	Modularity optimization
	Greedy techniques
	Simulated annealing
	Extremal optimization
	Spectral optimization
	Other optimization strategies

	Modifications of modularity
	Limits of modularity

	Spectral Algorithms
	Dynamic Algorithms
	Spin models
	Random walk
	Synchronization

	Methods based on statistical inference
	Generative models
	Blockmodeling, model selection & information theory

	Other methods
	Methods to find overlapping communities
	Clique percolation
	Other techniques

	Multiresolution methods and cluster hierarchy
	Multiresolution methods
	Hierarchical methods

	Significance of clustering
	Testing Algorithms
	Benchmarks
	Comparing partitions: measures
	Comparing algorithms

	General properties of real clusters
	Static communities
	Dynamic communities

	Applications on real-world networks
	Biological networks
	Social networks
	Other networks

	Outlook
	Acknowledgments
	Elements of Graph Theory
	Basic Definitions
	Graph Matrices
	Model graphs

	References

